Home
Class 12
MATHS
Show that if x(1),x(2),x(3) ne 0 |{:(x...

Show that if `x_(1),x_(2),x_(3) ne 0`
`|{:(x_(1) +a_(1)b_(1),,a_(1)b_(2),,a_(1)b_(3)),(a_(2)b_(1),,x_(2)+a_(2)b_(2),,a_(2)b_(3)),(a_(3)b_(1),,a_(3)b_(2),,x_(3)+a_(3)b_(3)):}|`
`=x_(1)x_(2)x_(3) (1+(a_(1)b_(1))/(x_(1))+(a_(2)b_(2))/(x_(2))+(a_(3)b_(3))/(x_(3)))`

Text Solution

Verified by Experts

The given determinant can be written as the sum of two determinants
`|{:(x_(1),,a_(1)b_(2),,a_(1)b_(3)),(0,,x_(2)+a_(2)b_(2),,a_(2)b_(3)),(0,,a_(3)b_(2),,x_(3)+a_(3)b_(3)):}|+|{:(a_(1)b_(1),,a_(1)b_(2),,a_(1)b_(3)),(a_(2)b_(1),,x_(2)+a_(2)b_(2),,a_(2)b_(3)),(a_(3)b_(1),,a_(3)b_(2),,x_(3)+a_(3)b_(3)):}|`
Expanding the first determinant along `C_(1)` we get
`x_(1) |{:(x_(2)+a_(2)b_(2),,a_(2)b_(3)),(a_(3)b_(2),,x_(3)+a_(3)b_(3)):}|`
`=x_(1)[(x_(2)+a_(2)b_(2))(x_(3)+a_(3)b_(3))-a_(3)b_(2)a_(2)b_(3)]`
`=x_(1)(x_(2)x_(3)+x_(3)a_(2)b_(2)+x_(2)a_(3)b_(3)+a_(2)b_(2)a_(3)b_(3)-a_(3)b_(2)b_(3)]`
`=x_(1)x_(2)x_(3)+x_(1)x_(3)a_(2)b_(2)+x_(1)x_(2)a_(3)b_(3)`
In the second determinant taking `b_(1)` common from `C_(1)` and then applying `C_(1) to C_(2) -b_(2)C_(1)" and " C_(3) to -b_(3)dC_(3)` we obtain
`b_(1) |{:(a_(1),,0,,0),(a_(2),,x_(2),,0),(a_(3),,0,,x_(3)):}|=a_(2)b_(1)x_(2)x_(3)`
Therefore the given determinant is
`x_(1)x_(2)x_(3)+x_(1)x_(3)a_(2)b_(2)+x_(1)x_(2)a_(3)b_(3)+a_(1)b_(1)x_(2)x_(3)`
`=x_(1)x_(2)x_(3) (1+(a_(1)b_(1))/(x_(1)) +(a_(2)b_(2))/(x_(2)) +(a_(3)b_(3))/(x_(3)))`
Promotional Banner

Similar Questions

Explore conceptually related problems

det[[2a_(1)b_(1),a_(1)b_(2)+a_(2)b_(1),a_(1)b_(3)+a_(3)b_(1)a_(1)b_(2)+a_(2)b_(1),2a_(2)b_(2),a_(2)b_(3)+a_(3)b_(2)a_(1)b_(3)+a_(3)b_(1),a_(3)b_(2)+a_(2)b_(3),2a_(3)b_(3)]]=

The determinant |(b_(1)+c_(1),c_(1)+a_(1),a_(1)+b_(1)),(b_(2)+c_(2),c_(2)+a_(2),a_(2)+b_(2)),(b_(3)+c_(3),c_(3)+a_(3),a_(3)+b_(3))|

Suppose a_(1),a_(2),a_(3) are in A.P. and b_(1),b_(2),b_(3) are in H.P. and let /_\=|(a_(1)-b_(1),a_(1)-b_(2),a_(1)-b_(3)),(a_(2)-b_(1),a_(2)-b_(2),a_(2)-b_(3)),(a_(3)-b_(1),a_(3)-b_(2),a_(3)-b_(3))| then

if quad /_=[[a_(1),b_(1),c_(1)a_(2),b_(2),c_(2)a_(3),b_(3),c_(3)]]

Show that |[a_(1),b_(1),-c_(1)],[-a_(2),-b_(2),c_(2)],[a_(3),b_(3),-c_(3)]|=|[a_(1),b_(1),c_(1)],[a_(2),b_(2),c_(2)],[a_(3),b_(3),c_(3)]|

The value of the determinant Delta = |(1 + a_(1) b_(1),1 + a_(1) b_(2),1 + a_(1) b_(3)),(1 + a_(2) b_(1),1 + a_(2) b_(2),1 + a_(2) b_(3)),(1 + a_(3) b_(1) ,1 + a_(3) b_(2),1 + a_(3) b_(3))| , is

if Delta=det[[a_(1),b_(1),c_(1)a_(2),b_(2),c_(2)a_(3),b_(3),c_(3)]]

Suppose a_(1),a_(2),a_(3) are in A.P. and b_(1),b_(2),b_(3) are in H.P. and let Delta=|(a_(1)-b_(1),a_(1)-b_(2),a_(1)-b_(3)),(a_(2)-b_(1),a_(2)-b_(2),a_(2)-b_(3)),(a_(3)-b_(1),a_(3)-b_(2),a_(3)-b_(3))| then prove that

the value of the determinant |{:((a_(1)-b_(1))^(2),,(a_(1)-b_(2))^(2),,(a_(1)-b_(3))^(2),,(a_(1)-b_(4))^(2)),((a_(2)-b_(1))^(2),,(a_(2)-b_(2))^(2) ,,(a_(2)-b_(3))^(2),,(a_(3)-b_(4))^(2)),((a_(3)-b_(1))^(2),,(a_(3)-b_(2))^(2),,(a_(3)-b_(3))^(2),,(a_(3)-b_(4))^(2)),((a_(4)-b_(1))^(2),,(a_(4)-b_(2))^(2),,(a_(4)-b_(3))^(2),,(a_(4)-b_(4))^(2)):}| is