Home
Class 12
MATHS
If |(a^2,b^2,c^2),((a+b)^2 ,(b+1)^2,(c+1...

If `|(a^2,b^2,c^2),((a+b)^2 ,(b+1)^2,(c+1)^2),((a-1)^2 ,(b-1)^2,(c-1)^2)| =k(a-b)(b-c)(c-a)` then the value of k is a. 4 b. -2 c.-4 d. 2

Text Solution

Verified by Experts

The correct Answer is:
`k=-4`

`" Let " |{:(a^(2),,b^(2),,c^(2)),((a+1)^(2),,(b+1)^(2),,(c+1)^(2)),((a-1)^(2),,(b-a)^(2),,(c-1)^(2)):}|`
`= 4 |{:(a^(2),,b^(2),,c^(2)),(a,,b,,c),((a-1)^(2),,(b-1)^(2),,(c-1)^(2)):}|`
[Applying `R_(2) to R_(2)-R_(3),` then taking 4 common from `R_(2)]`
`=4 |{:(a^(2),,b^(2),,c^(2)),(a,,b,,c),(1,,1,,1):}| [R_(3) to R_(3)-R_(1)+2R_(2)]`
`=-4 |{:(1,,1,,1),(a,,b,,c),(a^(2),,b^(2),,c^(2)):}|`
`=- 4(a-b)(b-c)(c-a)`
Hence `k=-4.`
Promotional Banner

Similar Questions

Explore conceptually related problems

a^(2),b^(2),c^(2)(a+1)^(2),(b+1)^(2),(c+1)^(2)(a-1)^(2),(b-1)^(2),(c-1)^(2) then find the value of k

|[a^(2), b^(2), c^(2)], [(a+1)^(2), (b+1)^(2), (c+1)^(2)], [(a-1)^(2), (b-1)^(2), (c-1)^(2)]| =-4(a-b)(b-c)(c-a)

If a, b, c are sides of a triangle and |(a^2,b^2,c^2),((a+1)^2,(b+1)^2,(c+1)^2),((a-1)^2,(b-1)^2,(c-1)^2)|= then

1,1,1a,b,ca^(2),b^(2),c^(2)]|=(a-b)(b-c)(c-a)

Show that |(1,1,1), (a,b,c),(a^2,b^2,c^2)|=(a-b)(b-c)(c-a)

([1,1,1a,b,ca^(2),b^(2),c^(2)])=(a-b)(b-c)(c-a)

Prove that |(1,a,a^2),(1,b,b^2),(1,c,c^2)|=(a-b)(b-c)(c-a)