Home
Class 12
MATHS
Evaluate |{:(.^(x)C(1),,.^(x)C(2),,.^(x)...

Evaluate `|{:(.^(x)C_(1),,.^(x)C_(2),,.^(x)C_(3)),(.^(y)C_(1),,.^(y)C_(2),,.^(y)C_(3)),(.^(x)C_(1),,.^(z)C_(2),,.^(z)C_(3)):}|`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(12) xyz (x-y) (y-z) (z-y)`

`Delta=|{:(x,,(1)/(2)x(x-1),,(1)/(6)x(x-1)(x-2)),(y,,(1)/(2)y(y-1),,(1)/(6)y(y-1)(y-2)),(z,,(1)/(2)z(z-1),,(1)/(6)z(z-1)(z-2)):}|`
`=(1)/(12)xyz = |{:(1,,x-1,,x^(2)-3x+2),(1,,y-1,,y^(2)-3y+2),(1,,z-1,,z^(2)-3z+2):}|`
`=(1)/(12)xyz = |{:(1,,x,,x^(2)-3x+2),(1,,y,,y^(2)-3y+2),(1,,z,,z^(2)-3z+2):}|" "(C_(2) to C_(2) +C_(1))`
`=(1)/(12)xyz =|{:(1,,x,,x^(2)),(1,,y,,y^(2)),(1,,z,,z^(2)):}|" "(C_(3) to C_(3)+3C_(2)-2C_(1))`
`=(1)/(12)xyz (x-y) (y-z)(z-x)`
Promotional Banner

Similar Questions

Explore conceptually related problems

|{:(.^(x)C_(r),,.^(x)C_(r+1),,.^(x)C_(r+2)),(.^(y)C_(r),,.^(y)C_(r+1),,.^(y)C_(r+2)),(.^(z)C_(r),,.^(z)C_(r+1),,.^(z)C_(r+2)):}| is equal to

The determinant |^(^^)xC_(1),^(x)C_(2),^(x)C_(3)^(^^)yC_(1),^(y)C_(2),^(y)C_(3)sim zC_(1),zC_(2),zC_(3)] is equal to-

Evaluate det[[x_(C_(1)),x_(C_(2)),x_(C_(3))y_(C_(1)),y_(C_(2)),yC_(3)z_(C_(1)),z_(C_(2)),z_(C_(3))]]

prove that |{:((a-x)^(2),,(a-y)^(2),,(a-z)^(2)),((b-x)^(2),,(b-y)^(2),,(b-z)^(2)),((c-x)^(2),,(c-y)^(2),,(c-z)^(2)):}| |{:((1+ax)^(2),,(1+bx)^(2),,(1+cx)^(2)),((1+ay)^(2),,(1+by)^(2),,(1+cy)^(2)),((1+az)^(2),,(1+bx)^(2),,(1+cz)^(2)):}| =2 (b-c)(c-a)(a-b)xx (y-z) (z-x)(x-y)

if x,y and z are not all zero and connected by the equations a_(1)x+b_(1)y+c_(1)z=0,a_(z)x+b_(2)y+c_(2)z=0 and (p_(1)+lambdaq_(1))x+(p_(2)+lambdaq_(2))y+(p_(3)+lambdaq_(3))z=0 show that lambda =-|{:(a_(1),,b_(1),,c_(1)),(a_(2) ,,b_(2),,c_(2)),(p_(1) ,, p_(2),,p_(3)):}|-:|{:(a_(1),,b_(1),,c_(1)),(a_(2) ,,b_(2),,c_(2)),(q_(1) ,, q_(2),,q_(3)):}|

STATEMENT-1: If three points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) are collinear, then |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 STATEMENT-2: If |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 then the points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) will be collinear. STATEMENT-3: If lines a_(1)x+b_(1)y+c_(1)=0,a_(2)=0and a_(3)x+b_(3)y+c_(3)=0 are concurrent then |{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=0

Show that |^x C_r^x C_(r+1)^x C_(r+2)^y C_r^y C_(r+1)^y C_(r+2)^z C_r^z C_(r+1)^z C_(r+1)|=|^x C_r^(x+1)C_(r+1)^(x+2)C_(r+2)^y C_r^(y+1)C_(r+1)^(y+2)C_(r+2)^z C_r^(z+1)C_(r+1)^(z+2)C_(r+1)| .

Prove that the value of each the following determinants is zero: (a^(x)+a^(-x))^(2),(a^(x)-a^(-x))^(2),1(b^(y)+b^(-y))^(2),(b^(y)-+b^(-y))^(2),1(c^(z)+c^(-z))^(2),(c^(z)-c^(-z))^(2),1]|