Home
Class 12
MATHS
" if " Delta(r) =|{:(2^(r-1),,2xx3^(r-1...

` " if " Delta_(r) =|{:(2^(r-1),,2xx3^(r-1),,4xx5^(r-1)),(alpha,,beta,,gamma),(2^(n)-1,,3^(n)-1,,5^(n)-1):}|`
then find the value of `Sigma_(r=1)^(n) Delta r`.

Text Solution

Verified by Experts

The correct Answer is:
0

`overset(n)underset(r=1)(Sigma)2^(r-1)=1+2+2^(2)+.......+2^(n+1)=1xx((2^(n)-1))/(2-1)=2^(n)-1`
`overset(n)underset(r=1)(Sigma)2xx3^(r-1)=2(1+3+3^(2)+...+3^(n-1))=(2(3^(n)-1))/(3-1)=3^(n)-1`
`overset(n)underset(r=1)(Sigma)4xx5^(r-1)=4(1+5+5^(2)+....+5^(n)-1)=(4(5^(n)-1))/(5-1)=5^(n)-1`
`:. overset(n)underset(r=1)(Sigma)Delta_(r ) =|{:(2^(n-1),,3^(n-1),,5^(n-1)),(alpha,,beta,,gamma),(2^(n-1),,3^(n-1),,5^(n-1)):}|=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

If Delta_(r)=det[[2^(r-1),2.3^(r-1),4.5^(r-1)alpha,beta,gamma2^(n)-1,3^(n)-1,5^(n)-1]], then find

Let Delta_(r)=|(2^(r-1),2(3^(r-1)),4(5^(r-1))),(alpha, beta, gamma),(2^(n)-1,3^(n)-1,5^(n)-1)| for r=1,2,………..n . The sum_(r=1)Delta_(r) is

If ,y,z2^(r),2xx3^(r),3xx4^(r)2(2^(n)-1),3*(3^(n)-1),4*(4^(n)-1) Find the value of ,sum_(r=1)^(n)Delta_(r)

" if " Delta_(r) = |{:(r,,612,,915),(101r^(2),,2r,,3r),(r,,(1)/(r),,(1)/(r^(2))):}| then the value of lim_( n to oo) .(1)/(n^(3)) (Sigma_(r=1)^(n) Delta_(r) " is " "____"

If Delta_(r) = |(1,r,2^(r)),(2,n,n^(2)),(n,(n(n_1))/(2),2^(n+1))| , then the value of sum_(r=1)^(n) Delta_(r) is

If D_(r) = |(r,1,(n(n +1))/(2)),(2r -1,4,n^(2)),(2^(r -1),5,2^(n) -1)| , then the value of sum_(r=1)^(n) D_(r) , is

" Let " Delta_(r)=|{:(r-1,,n,,6),((r-1)^(2),,2n^(2),,4n-2),((r-1)^(2),,3n^(3),,3n^(2)-3n):}|. " Show that " Sigma_(r=1)^(n) Delta_(r) is constant.

Let f(n), g (n) be polynomial in n and let Delta_(r)=|{:(r^(2).C_(r),n(n+1)2^(n-2),f(n)),(6r(n-r+1),n(n+1)(n+2),g(n)),(4(5^(r-1)),5^(n)-1,h(n)):}| , then evaluate underset(r=1)overset(n)sum Delta_(r) . (use (1+x)^(n)=underset(r=0)overset(n)sum(C_(r)x^(r)) )