Home
Class 12
MATHS
Prove the identities: |b^2+c^2a b a c b ...

Prove the identities: `|b^2+c^2a b a c b a c^2+a^2b cc a c b a^2+b^2|=4a^2b^2c^2`

Text Solution

Verified by Experts

`Delta = |{:(b^(2)+c^(2),,ab,,ac),(ab,,c^(2)+a^(2),,bc),(ca,,ca,,a^(2)+b^(2)):}|`
Applying `R_(1) to aR_(1),R_(2) to bR_(2) " and " R_(3) to cR_(3)` we get
`Delta=(1)/(abc)xx |{:(a(b^(2)+c^(2)),,a^(2)b,,a^(2)c),(ab^(2),,b(c^(2)+a^(2)),,cb^(2)),(ac^(2),,bc^(2),,c(a^(2)+b^(2))):}|`
Taking a,b and c common from `C_(1),C_(2) " and "C_(3)` respectively we get
`Delta= |{:(b^(2)+c^(2),,a^(2),,a^(2)),(b^(2),,c^(2)+a^(2),,b^(2)),(c^(2),,c^(2),,a^(2)+b^(2)):}|`
Applying `R_(1) to R_(1)-R_(2)-R_(3)`
`Delta = |{:(0,,-2c^(2),,-2b^(2)),(b^(2),,c^(2)+a^(2),,b^(2)),(c^(2),,c^(2),,a^(2)+b^(2)):}|`
Taking 2 common from `R_(1) ` and applying `R_(2) toR_(2) +R_(1) " and "R_(3) to R_(3)+R_(1)`
`Delta= 2 |{:(0,,-c^(2),,-b^(2)),(b^(2),,a^(2),,0),(c^(2),,0,,a^(2)):}|`
Expanding along `R_(1)` we get
`Delta =2[c^(2)(a^(2)b^(2))-b^(2)(-a^(2)c^(2))]=4a^(2)b^(2)c^(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the identities: |[b^2+c^2,ab, ac],[ba,c^2+a^2,bc],[ca, cb ,a^2+b^2]|=4a^2b^2c^2

Prove: |a^2+1a b a c a bb^2+1b cc a c b c^2+1|=1+a^2+b^2+c^2

Prove the identities: |[a^2,a^2-(b-c)^2,b c], [b^2,b^2-(c-a)^2,c a],[ c^2,c^2-(a-b)^2,a b]|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)

Evaluate |[0,c,b] , [c,0,a] , [b,a,0]| hence show that |[0,c,b] , [c,0,a] , [b,a,0]|^2= |[b^2+c^2,ab,ac] , [ab,c^2+a^2,bc] , [ca,bc,a^2+b^2]|=4a^2b^2c^2

Using properties of determinants, prove that: |[b^2+c^2,a^2,a^2],[b^2,c^2+a^2,b^2],[c^2,c^2,a^2+b^2]|=4a^2b^2c^2

Prove that identities: |[-bc,b^2+bc,c^2+bc],[a^2+ac,-ac,c^2+ac],[a^2+ab,b^2+ab,-ab]|=(a b+b c+a c)^3

Prove: |(a^2,b c, a c+c^2),(a^2+a b,b^2,a c ),(a b,b^2+b c,c^2)|=4a^2b^2c^2

Prove: |(0,b^2a, c^2a),( a^2b,0,c^2b),( a^2c, b^2c,0)|=2a^3b^3c^3

Prove that a(b^(2) + c^(2)) cos A + b(c^(2) + a^(2)) cos B + c(a^(2) + b^(2)) cos C = 3abc

Prove that: |1a a^2-b c1bb^2-c a1cc^2-a b|=0