Home
Class 12
MATHS
Show that: |b^2+c^2a b a c b a c^2+a^2b ...

Show that: `|b^2+c^2a b a c b a c^2+a^2b cc a c b a^2+b^2|=4a^2b^2c^2`

Text Solution

Verified by Experts

`Delta = |{:(b^(2)+c^(2),,ab,,ac),(ab,,c^(2)+a^(2),,bc),(ca,,cb,,a^(2)+b^(2)):}|`
`= |{:(0,, c,,b),(c,,0,,a),(c,,a,,0):}| |{:(0,,c,,b),(c,,0,,a),(b,,a,,0):}|`
`=(2abc)^(2)=4a^(2)b^(2)c^(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate |[0,c,b] , [c,0,a] , [b,a,0]| hence show that |[0,c,b] , [c,0,a] , [b,a,0]|^2= |[b^2+c^2,ab,ac] , [ab,c^2+a^2,bc] , [ca,bc,a^2+b^2]|=4a^2b^2c^2

Prove: |(a^2,b c, a c+c^2),(a^2+a b,b^2,a c ),(a b,b^2+b c,c^2)|=4a^2b^2c^2

Without expanding show that |[b^2c^2,b c, b+c],[c^2a^2,c a ,c+a ],[a^2b^2,a b ,a+b]|=0

Show that: |a b-cc+b a+c b c-a a-bb+a c|=(a+b+c)(a^2+b^2+c^2)dot

Prove that =|1 1 1a b c b c+a^2a c+b^2a b+c^2|=2(a-b)(b-c)(c-a)

Show that |((b+c)^2,a^2,bc),((c+a)^2,b^2,ca),((a+b)^2,c^2,ab)|=(a^2+b^2+c^2)(a+b+c)(a-b)(b-c)(c-a).

Show that |abca^(2)b^(2)c^(2)baab|=|111a^(2)b^(2)c^(2)a^(2)b^(2)c^(3)|=(a-b)(b-c)(c-a)(ab+bc+ca)

(i) a , b, c are in H.P. , show that (b + a)/(b -a) + (b + c)/(b - c) = 2 (ii) If a^(2), b^(2), c^(2) are A.P. then b + c , c + a , a + b are in H.P. .

Suppose A, B, C are defined as A=a^2b+a b^2-a^2c-a c^2, B=b^2c+b c^2-a^2b-a b^2, a n dC=a^2c+a c^2-b^2c-b c^2, w h e r ea > b > c >0 and the equation A x^2+B x+C=0 has equal roots, then a ,b ,c are in AdotPdot b. GdotPdot c. HdotPdot d. AdotGdotPdot

Show that |[a^2,a^2-(b-c)^2,bc],[b^2,b^2-(c-a)^2,ca],[c^2,c^2-(a-b)^2,ab]|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)