Home
Class 12
MATHS
Express =|2b c-a^2c^2b^2c^2 2c a-b^2a^2b...

Express `=|2b c-a^2c^2b^2c^2 2c a-b^2a^2b 62a^2 2a b-c^2|` as square of a determinant of hence evaluate if.

Text Solution

Verified by Experts

The correct Answer is:
`[3abc-a^(2)-b^(3)-c^(3)]^(2)`

The given determinants is
`|{:(a,, b,,c),(b,,c,,a),(c,,a,,b):}| xx |{:(-a,,c,,b),(-b,,a,,c),(-c,,b,,a):}|=Delta `[row by row multiplication]
Therefore
`Delta = |{:(a,,b,,c),(b,,c,,a),(c,,a,,b):}||{:(a,,b,,c),(b,,c,,a),(c,,a,,b):}|=|{:(a,,b,,c),(b,,c,,a),(c,,a,,b):}|^(2)`
`=[a(bc-a^(2))+b(ac-b^(2))+c(ab-c)^(2))]^(2)`
`=[3abc -a^(3)-b^(3)-c^(3)]^(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose A, B, C are defined as A=a^2b+a b^2-a^2c-a c^2, B=b^2c+b c^2-a^2b-a b^2, a n dC=a^2c+a c^2-b^2c-b c^2, w h e r ea > b > c >0 and the equation A x^2+B x+C=0 has equal roots, then a ,b ,c are in AdotPdot b. GdotPdot c. HdotPdot d. AdotGdotPdot

Prove: |(a^2,b c, a c+c^2),(a^2+a b,b^2,a c ),(a b,b^2+b c,c^2)|=4a^2b^2c^2

If (b^2+c^2-a^2)/(2b c),(c^2+a^2-b^2)/(2c a),(a^2+b^2-c^2)/(2a b) are in A.P. and a+b+c=0 then prove that a(b+c-a),b(c+a-b),c(a+b-c) are in A.P.

Prove: |((a^2+b^2)/c,c,c),( a,(b^2+c^2)/a ,a),( b,b,(c^2+a^2)/b)|=4a b c

If the expression a^(2)(b^(2)-c^(2))x^(2)+b^(2)(c^(2)-a^(2))x+c^(2)(a^(2)-b^(2)) is a perfect square, then

Prove: |a^3 2a b^3 2b c^3 2c|=2(a-b)(b-c)(c-a)(a+b+c)

Prove that =|1 1 1a b c b c+a^2a c+b^2a b+c^2|=2(a-b)(b-c)(c-a)

Prove: |(0,b^2a, c^2a),( a^2b,0,c^2b),( a^2c, b^2c,0)|=2a^3b^3c^3

The determinant |a2\ a^2-(b-c)^2b c b^2b^2-(c-a)^2c a c^2c^2-(a-b)^2a b| is divisible by- a. a+b+c b. (a+b)(b+c)(c+a) c. a^2+b^2+c^2 d. (a-b)(b-c)(c-a)

If a^(2) + b^(2) + c^(2) = 2(a +2b -2c)-9 then find a+b+c =?