Home
Class 12
MATHS
If f(x),g(x)a n dh(x) are three polyn...

If `f(x),g(x)a n dh(x)` are three polynomial of degree 2, then prove that `varphi(x)=|f(x)g(x)h(x)f'(x)g'(x h '(x)f' '(x)g' '(x h ' '(x)|` is a constant polynomial.

Text Solution

Verified by Experts

Let `a(x)=a_(1)x^(2)+a_(2)x+a_(3),g(x)=b_(1)x^(2)+b_(2)x+b_(3)`
` " and "h(x) =c_(1)x^(2)+c_(2)x+c_(3)." Then "`
`f(x)=2a_(1)x+a_(2),g(x)=2b_(1)x+b_(2)`
`" and "h(x)=2c_(1)x+c_(2)`
`f(x)=2a_(1),g(x)=2b_(1)h''(x)=2c_(1)`
`f''(x)=g'''(x)=h'''(x)=0`
In order to Prove that `phi (x)` is a constant polynomial it is sufficient to show that `phi (x) =0` for all x. Now
`phi (x)= |{:(f(x),,g(x),,h(x)),(f'(x),,g'(x),,h'(x)),(f''(x),,g''(x),,h''(x)):}|`
`rArr phi (x) =|{:(f'(x),,g'(x),,h'(x)),(f'(x),,g'(x),,h'(x)),(f''(x),,g''(x),,h''(x)):}|`
`+|{:(f(x),,g(x),,h(x)),(f''(x),,g''(x),,h''(x)),(f''(x),,g''(x),,h''(x)):}|`
`+|{:(f(x),,g(x),,h(x)),(f'(x),,g'(x),,h'(x)),(f'''(x),,g'''(x),,h'''(x)):}|`
`=0+0+ |{:(f(x),,g(x),,h(x)),(f'(x),,g'(x),,h'(x)),(0,,0,,0):}|`
`=0+0+0+=0 ` for all x
`rArr phi (x)=` constant for all
Hence `phi(x)` is a constant polynomial.
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x),g(x) andh (x) are three polynomial of degree 2, then prove that f(x)g(x)h(x)f'(x)g'(xh'(x)f''(x)g''(x)h''(x)| is a constant polynomial.

"Prove that "phi(x)=|{:(f(x),g(x),h(x)),(f'(x),g'(x),h'(x)),(f''(x),g''(x),h''(x)):}| is a constant polynomial.

If f(x),g(x)a n dh(x) are three polynomials of degree 2, then prove that varphi(x)=|f(x)g(x)h(x)f^(prime)(x)g^(prime)(x)h^(prime)(x)f^(x)g^(x)h^(x)|i sacon s t a n tpol y nom i a l

If f(x) g(x) and h(x) are three polynomials of degree 2 and Delta = |( f(x), g(x), h(x)), (f'(x), g'(x), h'(x)), (f''(x), g''(x), h''(x))| then Delta(x) is a polynomial of degree (dashes denote the differentiation).

If f(x), g(x), h(x) are polynomials of three degree, then phi(x)=|(f'(x),g'(x),h'(x)), (f''(x),g''(x),h''(x)), (f'''(x),g'''(x),h'''(x))| is a polynomial of degree (where f^n (x) represents nth derivative of f(x))

If f(x),g(x),h(x) are polynomials in x of degree 2 and F(x)=|fghf'g' h 'f' 'g' ' h ' '| , then F^(prime)(x) is equal to 1 (b) 0 (c) -1 (d) f(x)dotg(x)doth(x)

int(f(x)*g'(x)-f'(x)g(x))/(f(x)*g(x)){log g(x)-log f(x)}dx

If (x-1) is a factor of polynomial f(x) but not of g(x) ,then it must be a factor of f(x)g(x)(b)-f(x)+g(x)f(x)-g(x)(d){f(x)+g(x)}g(x)