Home
Class 12
MATHS
if x,y and z are not all zero and con...

if x,y and z are not all zero and connected by the equations `a_(1)x+b_(1)y+c_(1)z=0,a_(z)x+b_(2)y+c_(2)z=0` and `(p_(1)+lambdaq_(1))x+(p_(2)+lambdaq_(2))y+(p_(3)+lambdaq_(3))z=0` show that
`lambda =-|{:(a_(1),,b_(1),,c_(1)),(a_(2) ,,b_(2),,c_(2)),(p_(1) ,, p_(2),,p_(3)):}|-:|{:(a_(1),,b_(1),,c_(1)),(a_(2) ,,b_(2),,c_(2)),(q_(1) ,, q_(2),,q_(3)):}|`

Text Solution

Verified by Experts

Since x,y and z are not all zero the determinant of the coefficient of the given set of equation must satisfy
` |{:(a_(1),,b_(1),,c_(1)),(a_(2),,b_(2),,c_(2)),(p_(1)+lambdaq_(1),,p_(2)+lambdaq_(2),,p_(3)+lambdaq_(3)):}|=0`
` rArr lambda= |{:(a_(1),,b_(1),,c_(1)),(a_(2),,b_(2),,c_(2)),(p_(1),,p_(2),,p_(3)):}|-: |{:(a_(1),,b_(1),,c_(1)),(a_(2),,b_(2),,c_(2)),(q_(1),,q_(2),,q_(3)):}|`
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that |{:(ma_(1),b_(1),nc_(1)),(ma_(2),b_(2),nc_(2)),(ma_(3),b_(3),nc_(3)):}|=-mn|{:(c_(1),b_(1),a_(1)),(c_(2),b_(2),a_(2)),(c_(3),b_(3),a_(3)):}|

If x ,ya n dz are not all zero and connected by the equations a_1x+b_1y+c_1z=0,a_2x+b_2y+c_2z=0,a n d(p_1+lambdaq_1)x+(p_2+lambdaq_2)+(p_3+lambdaq_3z=0) , show that lambda=-|a_1b_1c_1a_2b_2c_2p_1p_2p_3|-:|a_1b_1c_1a_2b_2c_2q_1q_2q_3|

Show that |[a_(1),b_(1),-c_(1)],[-a_(2),-b_(2),c_(2)],[a_(3),b_(3),-c_(3)]|=|[a_(1),b_(1),c_(1)],[a_(2),b_(2),c_(2)],[a_(3),b_(3),c_(3)]|

if quad /_=[[a_(1),b_(1),c_(1)a_(2),b_(2),c_(2)a_(3),b_(3),c_(3)]]

if Delta=det[[a_(1),b_(1),c_(1)a_(2),b_(2),c_(2)a_(3),b_(3),c_(3)]]

If the system of equations a_(1)x+b_(1)y+c_(1),a_(2)x+b_(2)y+c_(2)=0 is inconsistent,(a_(1))/(a_(2))=(b_(1))/(b_(2))!=(c_(1))/(c_(2))

If, in D={:[(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))]:}, the co-factor of a_(r)" is "A_(r), then , c_(1)A_(1)+c_(2)A_(2)+c_(3)A_(3)=

Consider the system of equations a_(1) x + b_(1) y + c_(1) z = 0 a_(2) x + b_(2) y + c_(2) z = 0 a_(3) x + b_(3) y + c_(3) z = 0 If |(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))| =0 , then the system has

For two linear equations a_(1)x + b_(1)y + c_(1)= 0 and a_(2) x+ b_(2)y+ c_(2)= 0 , then condition (a_(1))/(a_(2)) = (b_(1))/(b_(2))= (c_(1))/(c_(2)) is for

suppose D= |{:(a_(1),,b_(1),,c_(1)),(a_(2),,b_(2),,c_(2)),(a_(3),,b_(3),,c_(3)):}| and Dprime= |{:(a_(1)+pb_(1),,b_(1)+qc_(1),,c_(1)+ra_(1)),(a_(2)+pb_(2),,b_(2)+qc_(2),,c_(2)+ra_(2)),(a_(3)+pb_(3),,b_(3)+qc_(3),,c_(3)+ra_(3)):}| . Then