Home
Class 12
MATHS
If alpha,beta,gamma are the roots of p x...

If `alpha,beta,gamma` are the roots of `p x^2+q x^2+r=0,` then the value of the determinant `|alphabetabetagammagammaalphabetagammagammaalphaalphabetagammaalphaalphabetabetagamma|` is `p` b. `q` c. `0` d. `r`

A

p

B

q

C

0

D

r

Text Solution

Verified by Experts

The correct Answer is:
C

Operating `C_(1) to C_(1) +C_(2) +C_(3)` gives
`(alpha beta+ beta gamma+gammaalpha) |{:(1,,betagamma,,gammaalpha),(1,,gammaalpha,,alphabeta),(1,,alphabeta,,betagamma):}|`
from the given equation `alpha beta +beta gamma +gamma alpha =0` so the value of determinant is 0
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are the roots of px^(2)+qx^(2)+r=0 then the value of the determinant det[[alpha beta,beta gamma,gamma alphabeta gamma,gamma alpha,alpha betagamma alpha,alpha beta,beta gamma]] is p b.q c.0 d.r

If alpha,beta & gamma are the roots the equations x^(3)+px+q=0 then the value of the determinant [{:(,alpha,beta,gamma),(,beta,gamma,alpha),(,gamma,alpha,beta):}]

If alpha,beta,gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 find the value of (beta+gamma)(gamma+alpha)(alpha+beta)

If alpha,beta are the roots of the equations x^(2)-2x+3=0 then find the numerical value of P and Q

If alpha, beta and gamma are the roots of the equation x^(3) + px + q = 0 (with p != 0 and p != 0 and q != 0 ), the value of the determinant |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| , is

If alpha , beta , gamma are roots of the equation x^(2)(px+q)=r(x+1) , then the value of determinant |{:(1+alpha,1,1),(1, 1+beta,1),(1,1,1+gamma):}| is

If alpha,beta be the roots of the equation x^(2)-px+q=0 then find the equation whose roots are (q)/(p-alpha) and (q)/(p-beta)