Home
Class 12
MATHS
If the determinant |(cos2x,sin^2 x,cos ...

If the determinant `|(cos2x,sin^2 x,cos 4x),(sin^2 x,cos 2x,cos^2 x),(cos 4x,cos^2 x,cos 2x)|` is expanded in powers of `sin x`, then the constant term is

A

1

B

0

C

-1

D

2

Text Solution

Verified by Experts

The correct Answer is:
C

`|{:(1-2 sin^(2)x,,sin^(2)x,,1-8 sin^(2)x(1-sin^(2)x)),(sin^(2)x,,1-sin^(2)x,,1-sin^(2)x),(1-8sin^(2)x(1-sin^(2)x),,1-sin^(2)x,,1-sin^(2)x):}|`
The required constant terms is
`|{:(1,,0,,1),(0,,1,,1),(1,,1,,1):}|+|{:(1,,0,,0),(0,,1,,1),(1,,1,,0):}|=1(10 -1)=-1`
Promotional Banner

Similar Questions

Explore conceptually related problems

When the determinant |{:(cos2x,sin^(2)x,cos4x),(sin^(2)x,cos2x,cos^(2)x),(cos4x,cos^(2)x,cos2x):}| is expanded in powers of sin x , the constant term in than or equal to expression is

If determinant |[cos^(2)x,sin^(2)x,cos^(2)x],[sin^(2)x,cos^(2)x,sin^(2)x],[cos^(2)x,sin^(2)x,-cos^(2)x]| is expanded as a function of sin^(2)x ,then the absolute value of constant term in expansion of function is

" If determinant "|[cos^(2)x,sin^(2)x,cos^(2)x],[sin^(2)x,cos^(2)x,sin^(2)x],[cos^(2)x,sin^(2)x,-cos^(2)x]|" is expanded as a function of "sin^(2)x" ,then the absolute value of constant term in expansion of function "

(sin x + cos x)^2 + (sin x - cos x)^2

Find the maximum value of abs((sin^2x,1+cos^2x,cos2x),(1+sin^2x,cos^2x,cos2x),(sin^2x,cos^2x,sin2x))

(cos 4x sin 3x -cos 2x sin x )/(sin 4x sin x+ cos 6x cos x)= tan 2x

cos x cos 2x cos 4x cos 8x =(sin 16x)/(16sin x)

Evaluate int sin x cos x cos2x cos 4x cos 8x dx

If maximum and minimum values of the determinant |{:(1 + cos^(2)x , sin^(2) x, cos 2x),(cos^(2) x , 1 + sin^(2)x, cos 2x),(cos^(2) x , sin^(2) x , 1 + cos 2 x):}| are alpha and beta then