Home
Class 12
MATHS
if A(1) ,B(1),C(1) ……. are respectively...

if `A_(1) ,B_(1),C_(1) …….` are respectively the cofactors of the elements `a_(1) ,b_(1),c_(1)……` of the determinant
`Delta = |{:(a_(1),,b_(1),,c_(1)),(a_(2),,b_(2),,c_(2)),(a_(3),,b_(3),,c_(3)):}|, Delta ne 0 ` then the value of `|{:(B_(2),,C_(2)),(B_(3),,C_(3)):}|` is equal to

A

`a_(1)^(2)Delta`

B

`a_(1)Delta`

C

`a_(1)Delta^(2)`

D

`a_(1)^(2)Delta^(2)`

Text Solution

Verified by Experts

The correct Answer is:
B

`B_(2) =a_(1)c_(3) -a_(3)c_(1),C_(2)=-(a_(1)b_(3)-a_(3)b_(1))`
`B_(3) =-(a_(1)C_(2) -a_(2)c_(1)) ,C_(3)=a_(1)b_(2)-a_(2)b_(1)`
` :. |{:(B_(2),,C_(2)),(B_(3),,C_(2)):}|= |{:(a_(1)C_(3)-a_(3)c_(1),,-a_(1)b_(3)+a_(3)b_(1)),(-a_(1)c_(2)+a_(2)c_(1),,a_(1)b_(1)-a_(2)b_(1)):}|`
`=|{:(a_(1)c_(3),,-a_(1)b_(3)),(-a_(1)c_(2),,a_(1)b_(2)):}|+ |{:(a_(1)C_(3),,a_(3)b_(1)),(-a_(1)c_(2),,-a_(2)b_(1)):}|`
`+|{:(-a_(3)C_(1),,-a_(1)b_(3)),(-a_(1)C_(2),,a_(1)b_(2)):}|+ |{:(-a_(3)C_(1),,a_(3)b_(1)),(a_(2)c_(1),,-a_(2)b_(1)):}|`
` =a_(1)^(2) |{:(C_(3),,-b_(3)),(-c_(2),,b_(2)):}|+a_(1)b_(1) |{:(c_(3),,a_(3)),(-c_(2),,-a_(2)):}|`
`+a_(1)c_(1) |{:(-a_(3),,-b_(3)),(a_(2),,b_(2)):}|+b_(1)c_(1) |{:(-a_(3),,a_(3)),(a_(2),,-a_(2)):}|`
`=a_(1){a_(1)(b_(2)c_(3)-b_(3)c_(2))-b_(1)(a_(2)c_(3)-a_(3)c_(2))`
`+c_(1)(a_(2)b_(3)-a_(3)b_(2))}`
` =a_(1)|{:(a_(1),,b_(1),,c_(1)),(a_(2),,b_(2),,c_(2)),(a_(3),,b_(3),,c_(3)):}| =a_(1) Delta`
Promotional Banner

Similar Questions

Explore conceptually related problems

if quad /_=[[a_(1),b_(1),c_(1)a_(2),b_(2),c_(2)a_(3),b_(3),c_(3)]]

if Delta=det[[a_(1),b_(1),c_(1)a_(2),b_(2),c_(2)a_(3),b_(3),c_(3)]]

Show that |{:(ma_(1),b_(1),nc_(1)),(ma_(2),b_(2),nc_(2)),(ma_(3),b_(3),nc_(3)):}|=-mn|{:(c_(1),b_(1),a_(1)),(c_(2),b_(2),a_(2)),(c_(3),b_(3),a_(3)):}|

If, in D={:[(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))]:}, the co-factor of a_(r)" is "A_(r), then , c_(1)A_(1)+c_(2)A_(2)+c_(3)A_(3)=

if a_(1)b_(1)c_(1), a_(2)b_(2)c_(2)" and " a_(3)b_(3)c_(3) are three-digit even natural numbers and Delta = |{:(c_(1),,a_(1),,b_(1)),(c_(2),,a_(2),,b_(2)),(c_(3),,a_(3),,b_(3)):}|" then " Delta is

Cosnsider the system of equation a_(1)x+b_(1)y+c_(1)z=0, a_(2)x+b_(2)y+c_(2)z=0, a_(3)x+b_(3)y+c_(3)z=0 if |{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=0 , then the system has

Show that |[a_(1),b_(1),-c_(1)],[-a_(2),-b_(2),c_(2)],[a_(3),b_(3),-c_(3)]|=|[a_(1),b_(1),c_(1)],[a_(2),b_(2),c_(2)],[a_(3),b_(3),c_(3)]|

If a_(1),b_(1),c_(1),a_(2),b_(2),c_(2) "and" a_(3),b_(3),c_(3) are three digit even natural numbers and Delta=|{:(c_(1),a_(1),b_(1)),(c_(2),a_(2),b_(2)),(c_(3),a_(3),b_(3)):}| , then Delta is

Consider the system of linear equations a_(1)x+b_(1)y+ c_(1)z+d_(1)=0 , a_(2)x+b_(2)y+ c_(2)z+d_(2)= 0 , a_(3)x+b_(3)y +c_(3)z+d_(3)=0 , Let us denote by Delta (a,b,c) the determinant |{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}| , if Delta (a,b,c) # 0, then the value of x in the unique solution of the above equations is