Home
Class 12
MATHS
if w is a complex cube root to unity...

if w is a complex cube root to unity then value of
` Delta =|{:(a_(1)+b_(1)w,,a_(1)w^(2)+b_(1),,c_(1)+b_(1)bar(w)),(a_(2)+b_(2)w,,a_(2)w^(2)+b_(2),,c_(2)+b_(2)bar(w)),(a_(3)+b_(3)w,,a_(3)w^(2)+b_(3),,c_(3)+b_(3)bar(w)):}|` is

A

0

B

-1

C

2

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

`Delta =|{:(a_(1)+b_(1)w,,a_(1)w^(2)+b_(1),,c_(1)+b_(1)hat(w)),(a_(2)+b_(2)w,,a_(2)w^(2)+b_(2),,c_(2)+b_(2)hat(w)),(a_(3)+b_(3)w,,a_(3)w^(2)+b_(3),,c_(3)+b_(3)hat(w)):}|`
`" Operating " C_(2) to wC_(2) ` we have
`Delta =(1)/(w) |{:(a_(1)+b_(1)w,,a_(1)w^(2)+b_(1),,c_(1)+b_(1)hat(w)),(a_(2)+b_(2)w,,a_(2)w^(2)+b_(2),,c_(2)+b_(2)hat(w)),(a_(3)+b_(3)w,,a_(3)w^(2)+b_(3),,c_(3)+b_(3)hat(w)):}|`
`=(1)/(w)|{:(a_(1)+b_(1)w,,a_(1)+b_(1)w,,c_(1)+b_(1)hat(w)),(a_(2)+b_(2)w,,a_(2)+b_(2)w,,c_(2)+b_(2)hat(w)),(a_(3)+b_(3)w,,a_(3)+b_(3)w,,c_(3)+b_(3)hat(w)):}|`
`=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is a complex cube root of unity, then value of Delta=|(a_(1)+b_(1)omega, a_(1)omega^(2)+b_(1),c_(1)+b_(1)omega),(a_(2)+b_(2)omega,a_(2)omega^(2)+b_(2),c_(2)+b_(2)omega),(a_(3)+b_(3)omega,a_(3)omega^(2)+b_(3),c_(3)+b_(3)omega)| is

If w is a complex cube root of unity, then the value of the determinant Delta = [(1,w,w^(2)),(w,w^(2),1),(w^(2),1,w)] , is

If omega is a non-real cube root of unity, then Delta = |(a_(1) + b_(1) omega,a_(1) omega^(2) + b_(1),a_(1) + b_(1) + c_(1) omega^(2)),(a_(2) + b_(2) omega,a_(2) omega^(2) + b_(2),a_(2) + b_(2) omega + c_(2) omega^(2)),(a_(3) + b_(3) omega,a_(3) omega^(2) + b_(3),a_(3) + b_(3) omega + c_(3) omega^(2))| is equal to

if Delta=det[[a_(1),b_(1),c_(1)a_(2),b_(2),c_(2)a_(3),b_(3),c_(3)]]

The determinant |(b_(1)+c_(1),c_(1)+a_(1),a_(1)+b_(1)),(b_(2)+c_(2),c_(2)+a_(2),a_(2)+b_(2)),(b_(3)+c_(3),c_(3)+a_(3),a_(3)+b_(3))|

det[[2a_(1)b_(1),a_(1)b_(2)+a_(2)b_(1),a_(1)b_(3)+a_(3)b_(1)a_(1)b_(2)+a_(2)b_(1),2a_(2)b_(2),a_(2)b_(3)+a_(3)b_(2)a_(1)b_(3)+a_(3)b_(1),a_(3)b_(2)+a_(2)b_(3),2a_(3)b_(3)]]=

Show that |[a_(1),b_(1),-c_(1)],[-a_(2),-b_(2),c_(2)],[a_(3),b_(3),-c_(3)]|=|[a_(1),b_(1),c_(1)],[a_(2),b_(2),c_(2)],[a_(3),b_(3),c_(3)]|

if quad /_=[[a_(1),b_(1),c_(1)a_(2),b_(2),c_(2)a_(3),b_(3),c_(3)]]

If w is a complex cube root of unity, then value of =|a_1+b_1w a_1w^2+b_1c_1+b_1 w a_2+b_2w a_2w^2+b_2c_2+b_2 w a_3+b_3w a_3w^2+b_3c_3+b_3 w | is a. 0 b. -1 c. 2 d. none of these