Home
Class 12
MATHS
If |(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))|...

If `|(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))|= (a -b) (b -c) (c -a) (a + b+c)`
where a, b, c are all different, then the determinant
`|(1,1,1),((x-a)^(2),(x -b)^(2),(x -c)^(2)),((x -b) (x -c),(x -c) (x -a),(x -a) (x -b))|` vanishes when

A

`a+b+c=0`

B

`x=(1)/(3) (a+b+c)`

C

`x=(1)/(2) (a+b+c)`

D

`x=a+b+c`

Text Solution

Verified by Experts

The correct Answer is:
B

we have
`|{:(1,,1,,1),(a,,b,,c),(a^(3),,b^(3),,c^(3)):}|=(a-b)(b-c)(c-) (a+b+c)`
`" Also " |{:(1,,1,,1),(a,,b,,c),(a^(3),,b^(3),,c^(3)):}|`
`=abc |{:((1)/(a),,(1)/(b),,(1)/(c)),(1,,1,,1),(a^(2),,b^(2),,c^(2)):}|" ""(taking a,b,c common from "R_(1),R_(2),R_(3)")"`
`=|{:(bc,,ac,,ab),(1,,1,,1),(a^(2),,b^(2),,c^(2)):}|` (Multiplying `R_(1)` by abc)
`=|{:(1,,1,,1),(a^(2),,b^(2),,c^(2)),(bc,,ac,,ab):}|`
`" Then " D = |{:(1,,1,,1),((x-a)^(2),,(x-b)^(2),,(x-c)^(2)),((x-b)(x-c),,(x-c)(x-a),,(x-a)(x-b)):}|`
Now given that a,b and C are all different So D=0 when
`x=(1)/(3) (a+b+c)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If |1 1 1a b c a^3b^2c^3|=(a-b)(b-c)(c-a)(a+b+c),w h e r ea ,b ,c are different, then the determinant |1 1 1(x-a)^2(x-b)^2(x-c)^2(x-b)(x-c)(x-c)(x-a)(x-a)(x-b)| vanishes when a.a+b+c=0 b. x=1/3(a+b+c) c. x=1/2(a+b+c) d. x=a+b+c

If |1 1 1a b c a^3b^3c^3|=(a-b)(b-c)(c-a)(a+b+c), then the solution of the equation |1 1 1(x-a)^2(x-b)^2(x-c)^2(x-b)(x=-c_(x-c)(x-a)(x-a)(x-b)|=0i s

Prove that (ax^(2))/((x -a)(x-b)(x-c))+(bx)/((x -b)(x-c))+(c)/(x-c)+1 = (x^(3))/((x-a)(x-b)(x-c)) .

(a^2/(x-a)+b^2/(x-b)+c^2/(x-c)+a+b+c)/(a/(x-a)+b/(x-b)+c/(x-c))

(x^(3))/((x-a)(x-b)(x-c))=1+(A)/(x-a)+(B)/(x-b)+(C)/(x-c) then A=

" 0.The value of the determinant "|[1,x,x^(2)],[1,b,b^(2)],[1,c,c^(2)]|" is: "

If a, b,c> 0 and x,y,z in R then the determinant: |((a^x+a^-x)^2,(a^x-a^-x)^2,1),((b^y+b^-y)^2,(b^y-b^-y)^2,1),((c^z+c^-z)^2,(c^z-c^-z)^2,1)| is equal to

Solution of equation ((x-b)(x-c))/((a-b)(a-c))+((x-c)(x-a))/((b-c)(b-a))+((x-a)(x-b))/((c-a)(c-b))=1 is/are.