Home
Class 12
MATHS
The value of the determinant |(1,1,1),(....

The value of the determinant `|(1,1,1),(.^(m)C_(1),.^(m +1)C_(1),.^(m+2)C_(1)),(.^(m)C_(2),.^(m +1)C_(2),.^(m+2)C_(2))|` is equal to

A

1

B

-1

C

0

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

`|{:(1,,1,,1),(.^(m)C_(1),,.^(m+1)C_(1),,.^(m+2)C_(1)),(.^(m)C_(2),,.^(m+1)C_(2),,.^(m+2)C_(2)):}|`
`=|{:(1,,1,,1),(.^(m)C_(1),,.^(m+1)C_(1),,.^(m+1)C_(0)+.^(m+1)C_(1)),(.^(m)C_(1),,.^(m+1)C_(2),,.^(m+1)C_(1)+.^(m+1)C_(2)):}|
|{:(1,,1,,1),(.^(m)C_(1),,.^(m+1)C_(1),,.^(m+1)C_(0)),(.^(m)C_(2),,,^(m+1)C_(2),,.^(m+1)C_(1)):}|" ""[Applying " C_(3) to C_(3) -C_(2)"]"`
`=|{:(1,,1,,1),(.^(m)C_(1),,.^(m)C_(0).^(m)C_(1),,.^(m+1)C_(0)),(.^(m)C_(2),,.^(m)C_(1)+.^(m)C_(2),,.^(m+1)C_(1)):}|`
`=|{:(1,,0,,0),(.^(m)C_(1),,.^(m)C_(0),,.^(m+1)C_(0)),(.^(m)C_(2),,.^(m)C_(1),,.^(m+1)C_(1)):}|" ""[Applying " C_(2) to C_(2) -C_(1)" ]"`
`=.^(m)C_(0).^(m+1)C_(1)-^(m+1)C_(0).^(m)C_(1)`
`=m +1-m`
`=1`
Promotional Banner

Similar Questions

Explore conceptually related problems

If m in N and m>=2 prove that: |111^(m)C_(1)^(m+1)C_(1)^(m+2)C_(1)^(m)C_(2)^(m+1)C_(2)^(m+2)C_(2)|=1

The value of determinant |1 1 1^m C_1^(m+1)C_1^(m+2)C_1^m C_2^(m+1)C_2^(m+2)C_2| is equal to 1 b. -1 c. 0 d. none of these

If Delta=|(1,1,1),(""^(m)C_(1),""^(m+3)C_(1),""^(m+6)C_(1)),(""^(m)C_(2),""^(m+3)C_(2),""^(m+6)C_(2))|=2^(alpha)3^(beta),5^(gamma) , then alpha+beta+gamma is equal

|{:(1,1,1),(m_(C1),m+1_(C1),m+2_(C1)),(m_(C2),m+1_(C2),m+2_(C2)):}|=

If m, n, r, in N then .^(m)C_(0).^(n)C_(r) + .^(m)C_(1).^(n)C_(r-1)+"…….."+.^(m)C_(r).^(n)C_(0) = coefficient of x^(r) in (1+x)^(m)(1+x)^(n) = coefficient of x^(f) in (1+x)^(m+n) The value of r for which S = .^(20)C_(r.).^(10)C_(0)+.^(20)C_(r-1).^(10)C_(1)+"........".^(20)C_(0).^(10)C_(r) is maximum can not be

^(n)C_(m)+^(n-1)C_(m)+^(n-2)C_(m)+............+^(m)C_(m)