Home
Class 12
MATHS
If xneynez" and " |{:(x,x^(2),1+x^(3)),(...

If `xneynez" and " |{:(x,x^(2),1+x^(3)),(y,y^(2),1+y^(3)),(z,z^(2),1+z^(3)):}|=0,` then `xyz` =

A

` 1`

B

`2`

C

`-1`

D

`-2`

Text Solution

Verified by Experts

The correct Answer is:
C

Since each element of `C_(1)` is the sum of two determinants we get
`Delta =|{:(x^(3),,x^(2),,x),(y^(3),,y^(2),,y),(z^(3),,z^(2),,z):}|+ |{:(1,,x^(2),,x),(1,,y^(2),,y),(1,,z^(2),,z):}|`
`=xyz |{:(x^(2),,x,,1),(y^(2),,y,,1),(z^(2),,z,,1):}|+|{:(1,,x^(2),,x),(1,,y^(2),,y),(1,,z^(2),,z):}|`
`=-(xyz +1) |{:(1,,x,,x^(2)),(1,,y,,y^(2)),(1,,z,,z^(2)):}|`
`=-(xyz +1) (x-y)(y-z)(z-x)(x+y+z)`
Since `Delta =0 ,x y,z ` all are distinct we have xyz +1=0
`" or " xyz=-1`
Promotional Banner

Similar Questions

Explore conceptually related problems

If x,y,z are different and Delta=|{:(x,x^(2),1+x^(3)),(y,y^(2),1+y^(3)),(z,z^(2),1+z^(3)):}|=0 , show that : (i) 1+xyz=0 (ii) xyz=-1

Given that xyz = -1 , the value of the determinant |(x,x^(2),1 +x^(3)),(y,y^(2),1 + y^(3)),(z,z^(2),1 +z^(3))| is

If |{:(x,x^2,1+x^3),(y,y^2,1+y^3),(z, z^2,1+z^3):}|=0 then relation of x,y and z is

If x!=y!=z and |x^(2)1+x^(3)yy^(2)1+y^(3)zz^(2)1+z^(3)|=0, then prove that xyz=-1

If x,y,z are different and Delta=det[[x,x^(2),1+x^(3)y,y^(2),1+y^(3)z,z^(2),1+z^(3)]]=0, then prove that 1+xyz=0,

If x,y,z are different and Delta=det[[x,x^(2),1+x^(3)y,y^(2),1+y^(3)z,z^(2),1+z^(3)]]=0 then show that 1+xyz=0]|

Prove the following : |{:(x,y,z),(x^(2),y^(2),z^(2)),(x^(3),y^(3),z^(3)):}|=|{:(x,x^(2),x^(3)),(y,y^(2),y^(3)),(z,z^(2),z^(3)):}|=xyz(x-y)(y-z)(z-x)

If x,y,z are different and Delta=det[[x,x^(2),x^(3)-1y,y^(2),y^(3)-1z,z^(2),z^(3)-1]]=0, then using properties of determinants,show that xyz=1

If |(x^(n),x^(n+2),x^(n+3)),(y^(n),y^(n+2),y^(n+3)),(z^(n),z^(n+2),z^(n+3))| = (x -y) (y -z) (z -x) ((1)/(x) + (1)/(y) + (1)/(z)) , then n equals