Home
Class 12
MATHS
if x ne 0 , y ne 0 ,z ne 0 " and " |{...

if `x ne 0 , y ne 0 ,z ne 0 " and " |{:(1+x,,1,,1),(1+y,,1+2y,,1),(1+z,,1+z,,1+3z):}|=0` then
`x^(-1) +y^(-1) +z^(-1)` is equal to

A

`-1`

B

`-2`

C

`-3`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

`|{:(1+x,,1,,1),(1+y,,1+2y,,1),(1+z,,1+z,,3+3z):}|`
`=xyz |{:(1+(1)/(x),,(1)/(x),,(1)/(x)),(1+(1)/(y),,2+(1)/(y),,(1)/(y)),(1+(1)/(z),,1+(1)/(z),,3+(1)/(z)):}|`
`=xyz (3+(1)/(x)+(1)/(y)+(1)/(z)) |{:(1+(1)/(x),,(1)/(x),,(1)/(x)),(1+(1)/(y),,2+(1)/(y),,(1)/(y)),(1+(1)/(z),,1+(1)/(z),,3+(1)/(z)):}|`
`=xyz (3+(1)/(x)+(1)/(y)+(1)/(z)) |{:(1,,0,,0),(1+(1)/(y),,1,,-1),(1+(1)/(z),,0,,2):}|`
`=2xyz (3+(1)/(x)+(1)/(y)+(1)/(z)) `
Hence the given equation gives `x^(-1) +y^(-1) +z^(-1) =-3`
Promotional Banner

Similar Questions

Explore conceptually related problems

If x!=0,y!=0,z!=0 and det[[1+x,1,11+y,1+2y,11+z,1+z,1+3z]]=0, then x^(-1)+y^(-1)+z^(-1) is equal to a.1b.1c.-3d none of these

If |{:(x,x^2,1+x^3),(y,y^2,1+y^3),(z, z^2,1+z^3):}|=0 then relation of x,y and z is

If [{:(1,1,1),(1,-2,-2),(1,3,1):}][{:(x),(y),(z):}]=[{:(0),(3),(4):}] , then [{:(x),(y),(z):}] is equal to

If [[3,2],[x,1]]=[[z, y],[3,1]] then (x+1,y+1,z+1) is equal to

If [[3,2],[x,1]]=[[z, y],[3,1]] then (x+1,y+1,z+1) is equal to

If [(1,2,-3),(0,4,5),(0,0,1)][(x),(y),(z)]=[(1),(1),(1)] , then (x, y, z) is equal to