Home
Class 12
MATHS
The value of the determinant |[loga(x/y)...

The value of the determinant `|[log_a(x/y), log_a(y/z), log_a(z/x)], [log_b (y/z), log_b (z/x), log_b (x/y)], [log_c (z/x), log_c (x/y), log_c (y/z)]|`

A

1

B

-1

C

0

D

`(1)/(6) log _(a) xyz`

Text Solution

Verified by Experts

The correct Answer is:
C

`Delta = |{:(log_(a)((x)/(y)),,log_(a)((y)/(z)),,log_(a)((z)/(x))),(log_(a^(2))((y)/(z)),,log_(a^(2))((z)/(x)),,log_(a^(2))((x)/(y))),(log_(a^(3))((z)/(y)),,log_(a^(3))((x)/(y)),,log_(a^(3))((y)/(z))):}|`
`=(1)/(2) xx(1)/(3) |{:(log_(a)((x)/(y)),,log_(a)((y)/(z)),,log_(a)((z)/(x))),(log_(a)((y)/(z)),,log_(a)((z)/(x)),,log_(a)((x)/(y))),(log_(a)((z)/(y)),,log_(a)((x)/(y)),,log_(a)((y)/(z))):}|`
Now ,`log_(a)((x)/(y)) +log_(a)((y)/(z))+log_(a)((z)/(y))`
`=log_(a)((x)/(y))((y)/(z))((z)/(x))=log_(a)1=0`
So applying operation `R_(1) to R_(1)+R_(2)+R_(3) " on " Delta ` we get
`Delta =(1)/(2)xx(1)/(3) |{:(0,,0,,0),(log_(a).((y)/(z)),,log_(a).((z)/(x)),,log_(a).((x)/(y))),(log_(a).((z)/(x)),,log_(a).((x)/(y)),,log_(a).((y)/(z))):}|=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the determinant ,log_(a)((x)/(y)),log_(a)((y)/(z)),log_(a)((z)/(x))log_(b)((y)/(z)),log_(b)((z)/(x)),log_(b)((x)/(y))log_(c)((z)/(x)),log_(c)((x)/(y)),log_(c)((y)/(z))]|

det[[log_(x)y,log_(y)z,log_(z)ylog_(y)z log_(z)x,log_(x)ylog_(z)x,log_(x)y,log_(y)z]]=0,x,y,z in R,x,y,z>

log_(x)x xx log_(y)y xx log_(z)z = ______

For positive numbers x, y and z, the numerical value of the determinant |{:(1,"log"_(x)y, "log"_(x)z),("log"_(y)x, 1, "log"_(y)z),("log"_(z)x, "log"_(z)y, 1):}| is……

If "log"_(y) x = "log"_(z)y = "log"_(x)z , then

For positive numbers x ,\ y\ a n d\ z the numerical value of the determinant |1(log)_x y(log)_x z(log)_y x1(log)_y z(log)_z x(log)_z y1| is- a. 0 b. logx y z c. "log"(x+y+z) d. logx\ logy\ logz

For positive numbers x,y,s the numberical value of the determinant |{:(1,log_(x)y,log_(x)z),(log_(y)x,3,log_(y)z),(log_(z)x,log_(z)y,5):}| is