Home
Class 12
MATHS
If a gt 0, b gt 0, c gt0 are respectivel...

If `a gt 0, b gt 0, c gt0` are respectively the pth, qth, rth terms of a G.P , then the value of the determinant
`|(log a,p,1),(log b,q,1),(log c,r,1)|`, is

A

`0`

B

`log (abc)`

C

`-(p+q+r)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

Let the first terms of G.P. be A and common ration be R. then
`a=AR^(p-1)`
`rArr" log a=log A+ (p-1) log R.etc "`
`rArr |{:(log a,,p,,1),(log b,,q,,1),(log c,,r,,1):}|=|{:(log A +(p-1)log R,,p,,1),(log A+(q-1) log R,,q,,1),(log A+(r-1) log R,,r,,1):}|`
`= |{:((p-1)log R,,p,,1),((q-1) log R,,q,,1),((r-1) log R,,r,,1):}| " " [C_(1) to C_(1) -( log A) c_(3)]`
`= log R |{:(p,,p,,1),(q,,q,,1),(r,,r,,1):}|=0" "(C_(1) to C_(1)+C_(3))`
Promotional Banner

Similar Questions

Explore conceptually related problems

If a gt0, bgt0,cgt0 are respectively the p^("th"),q^("th"),r^("th") terms of a G.P.,. Then the value of the determinant |{:(loga, p,1),(logb,q,1),(logc,r,1):}| is

If the pth, qth and rth terms of a G.P, are x,y and z repectively, then prove that |{:(logx,p,1),(logy,q,1),(logz,r,1):}|=0

If a,b,c are positive and are the pth, qth and rth terms respectively of a G.P., the the value of |(loga, p, 1),(logb, q, 1),(logc, r, 1)|= (A) 1 (B) pqr(loga+logb+logc) (C) 0 (D) a^pb^qc^r

If a,b,c are positive and ar the p^(th),q^(th),r^(th) terms respectively of a G.P show that, |{:(,log a,p,1),(,log b,q,1),(,log c,r,1):}|=0

If a,b,and c are positive and are the pth, qth and rth terms respectively of a GP. Show without expanding that |{:(loga,p,1),(logb,q,1),(logc,r,1):}|=0