Home
Class 12
MATHS
If a >0 and discriminant of a x^2+2b x+c...

If `a >0` and discriminant of `a x^2+2b x+c` is negative, then `=a b a x+bb c b x+c a x+bb x+c0` is `+v e` b. `(a c-b)^2(a x^2+2b x+c)` c. `-v e` d. `0`

A

`+ve`

B

`(ac-b)^(2))(ax^(2)+2bx+c)`

C

`-ve`

D

`0`

Text Solution

Verified by Experts

The correct Answer is:
C

here `a gt 0 " and " 4b^(2) -4ac lt 0 , i.e., ac -b^(2) gt 0`
`:. .ax^(2) +2bx +c gt 0 ,AA x in R `
Now
`Delta = |{:(a,,b,,ax+b),(b,,c,,bx+c),(0,,0,,-(ax^(2)+2bx+c)):}|`
`"[Operating " R_(3) to R_(3) -xR_(1)-R_(2)"]"`
`=-(ax^(2)+2bx+c)(ac-b^(2))`
` =- (+ve) (+ve) =-ve`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find x in terms of a , b and c : (a)/(x - a) + (b)/(x - b) = (2 c)/(x - c) , x - a , b , c

If a ,b ,c are different, then the value of |0x^2-a x^3-b x^2+a0x^2+c x^4+b x-c0|=0 is c b. c c. b d. 0

If x+y+z=0 prove that |a x b y c z c y a z b x b z c x a y|=x y z|a b cc a bb c a|

If a + b + c = 0 and a ne c then the roots of the equation (b + c - a)x^(2) + (c + a - b)x + (a + b - c) = 0 , are

IF x^2 + a x + bc = 0 and x^2 + b x + c a = 0 have a common root , then a + b+ c=

If a+b+c=0, one root of [[a-x, c, b],[c, b-x, a],[ b, a, c-x]]=0 is a. x=1 b. x=2 c. x=a^2+b^2+c^2 d. x=0

If x, a, b, c are real and (x-a+b)^(2)+(x-b+c)^(2)=0 , then a, b, c are in

If f(x)=|x+a^2a b a c a b x+b^2b c a c b c x+c^2|,t h e n prove that f^(prime)(x)=3x^2+2x(a^2+b^2+c^2)dot