Home
Class 12
MATHS
The number of distinct real roots of |(s...

The number of distinct real roots of `|(sinx, cosx, cosx),(cos x,sin x,cos x),(cos x,cos x,sin x)|=0` in the interval `-(pi)/4 le x le (pi)/4` is

A

0

B

2

C

1

D

3

Text Solution

Verified by Experts

The correct Answer is:
C

Using `C_(1) to C_(1)+C_(2)+C_(3)`
`Delta = |{:(sin x + 2 cos x,,cos x,,cos x),( sin x+ 2 cos x,,sin x,,cos x ),(sin x+2 cos x,,cos x ,, sin x):}|`
`= (sin x + 2 cos x) |{:(1,,cos x ,,cos x),(0,,sin x -cos x ,,0),(0,,0,,sin x - cos x):}|`
`=(sin x +2 cos x) (sin x-cos x)^(2)`
Thus , `Delta =0 rArr tan x =-2 " or " tan x=1`
As `-pi//4 le x le pi//r " we get " -1 le tan x le 1`
`:. tan x=1 rArr x= pi//4`
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of distinct real roots of |(sinx,cosx,cosx),(cosx,sinx,cosx),(cosx,cosx,sinx)|=0 in the interval -pi/4 le x le pi/4 is (a) 0 (b) 2 (c) 1 (d) 3

The number of distinct roots of |(sinx, cosx, cosx),(cosx, sinx, cosx),(cosx,cosx,sinx)|=0 in the interval -pi/4 le x le pi/4 is (A) 0 (B) 2 (C) 1 (4) 2

The number of distinct real roots of the equation |cosx s in x s in x s in x cos x s in x s in x s in x cos x|=0 in the interval [-\ pi/4,pi/4] is- a. 3 b. \ 4 c. \ 2 d. 1

The number of distinct real roots of the equation, |(cos x, sin x , sin x ),(sin x , cos x , sin x),(sinx , sin x , cos x )|=0 in the interval [-pi/4,pi/4] is :

Number of solution(s) of the equation (sin x)/(cos3x)+(sin3x)/(cos3x)+(sin2x)/(cos27x)=0 in the interval (0,(pi)/(4)) is

The number of distinct real roots of the equation sqrt(sin x)-(1)/(sqrt(sin x))=cos x("where" 0le x le 2pi) is