Home
Class 12
MATHS
if D(k) = |{:( 1,,n,,n),(2k,,n^(2)+n+1 ,...

if `D_(k) = |{:( 1,,n,,n),(2k,,n^(2)+n+1 ,,n^(2)+n),(2k-1,,n^(2),,n^(2)+n+1):}|" and " Sigma_(k=1)^(n) D_(k)=56` then n equals

A

4

B

6

C

8

D

7

Text Solution

Verified by Experts

The correct Answer is:
D

`overset(n)underset(k=1)(Sigma) D_(k) =56`
`rArr |{:(overset(n)underset(k=1)(Sigma)1,,n,,n),(overset(n)underset(k=1)(Sigma)2k,,n^(2)+n+1,,n^(2)+n),(overset(n)underset(k=1)(Sigma)(2k-1),,n^(2),,n^(2)+n+1):}|=56`
`" or " |{:(n,,n,,n),(n(n+1),,n^(2)+n+1,,n^(2)+n),(n^(2),,n^(2),,n^(2)+n+1):}|`
Applying `C_(3) to C_(3) -C_(1) " and " C_(2) to C_(2)-C_(1)` we get
`|{:(n,,0,,0),(n(n+1),,1,,0),(n^(2),,0,,n+1):}|=56`
`" or " n(n+1) =56 " or " n=7`
Promotional Banner

Similar Questions

Explore conceptually related problems

u_(n) = |{:(1,,k,,k),(2n,,k^(2)+k+1,,k^(2)+k),(2n-1,,k^(2),,k^(2)+k+1):}| and sum_(n=1)^(k) u_(n)=72 then k=

If Delta_k=|(1,n,n), (2k, n^2+n+1, n^2+n), (2k-1, n^2, n^2+n+1)| and sum_(k=1)^n Delta_k = 56, then n is equal to (i)4 (ii)6 (iii)8 (iv)none

If Delta_(k) = |(k,1,5),(k^(2),2n +1,2n +1),(k^(3),3n^(2),3n +1)|, " then " sum_(k=1)^(n) Delta_(k) is equal to

If D_k=|[1,n,n],[2k,n^2+n+2,n^2+n],[2k-1,n^2,n^2+n+2]| and sum_(k=1)^n D_k=48 ,then n equals (a)4 (b) 6 (c) 8 (d) none of these

If D_k=1nn2k n^2+n+1n^2+n2k-1n^2n^2+n+1a n dsum_(k=1)^n D_k=56. then n equals 4 b. 6 c. 8 d. none of these

If Delta_k=|(1,n,n),(2(k-1),n(n+1),n(n-1)),(4k(k^2-1),n(n+1)(n^2-4),n(n+2)(n^2-1))|, then f(n)=sum_(k=1)^n Delta_k+n is a polynomial of degree (i)0 (ii)1 (iii)6 (iv)7

If U_(n) = |[1,K,K],[2n,K^(2)+K+1,K],[2n+1,K^(2)+K+1,K]| and sum_(n=1)^(K)U_(n)=-90 then absolute value of K is equal to

Given S_(n)=sum_(k=1)^(n)(k)/((2n-2k+1)(2n-k+1)) and T_(n)=sum_(k=1)^(n)(1)/(k) then (T_(n))/(S_(n)) is equal to

Let a_(n)=sum_(k=1)^(n)(1)/(k(n+1-k)), then for n>=2