Home
Class 12
MATHS
if Delta= |{:(3,,4,,5,,x),(4,,5,,6,,y),(...

if `Delta= |{:(3,,4,,5,,x),(4,,5,,6,,y),(5,,6,,7,,z),(x,,y,,z,,0):}|=0` then

A

`x,y,z " are in A.P."`

B

`x,y,z" are in G.P "`

C

`x, y, z " are in H.P "`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given by: \[ \Delta = \begin{vmatrix} 3 & 4 & 5 & x \\ 4 & 5 & 6 & y \\ 5 & 6 & 7 & z \\ x & y & z & 0 \end{vmatrix} \] and set it equal to zero. ### Step 1: Apply Row Operations We will perform row operations to simplify the determinant. We can use the operation \( R_1 \leftarrow R_1 + R_3 - 2R_2 \). Calculating the new first row: - First element: \( 3 + 5 - 2 \cdot 4 = 3 + 5 - 8 = 0 \) - Second element: \( 4 + 6 - 2 \cdot 5 = 4 + 6 - 10 = 0 \) - Third element: \( 5 + 7 - 2 \cdot 6 = 5 + 7 - 12 = 0 \) - Fourth element: \( x + z - 2y \) Thus, the determinant simplifies to: \[ \Delta = \begin{vmatrix} 0 & 0 & 0 & x + z - 2y \\ 4 & 5 & 6 & y \\ 5 & 6 & 7 & z \\ x & y & z & 0 \end{vmatrix} \] ### Step 2: Expand the Determinant Since the first row contains all zeros except for the last element, we can expand the determinant along the first row. The only term we get is: \[ (x + z - 2y) \cdot \begin{vmatrix} 4 & 5 & 6 \\ 5 & 6 & 7 \\ y & z & 0 \end{vmatrix} \] ### Step 3: Calculate the 3x3 Determinant Now we need to compute the determinant: \[ \begin{vmatrix} 4 & 5 & 6 \\ 5 & 6 & 7 \\ y & z & 0 \end{vmatrix} \] Using the formula for the determinant of a 3x3 matrix, we find: \[ = 4 \begin{vmatrix} 6 & 7 \\ z & 0 \end{vmatrix} - 5 \begin{vmatrix} 5 & 7 \\ y & 0 \end{vmatrix} + 6 \begin{vmatrix} 5 & 6 \\ y & z \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \( \begin{vmatrix} 6 & 7 \\ z & 0 \end{vmatrix} = 6 \cdot 0 - 7 \cdot z = -7z \) 2. \( \begin{vmatrix} 5 & 7 \\ y & 0 \end{vmatrix} = 5 \cdot 0 - 7 \cdot y = -7y \) 3. \( \begin{vmatrix} 5 & 6 \\ y & z \end{vmatrix} = 5z - 6y \) Putting it all together: \[ \Delta = (x + z - 2y) \left( 4(-7z) - 5(-7y) + 6(5z - 6y) \right) \] \[ = (x + z - 2y) \left( -28z + 35y + 30z - 36y \right) \] \[ = (x + z - 2y) \left( 2z - y \right) \] ### Step 4: Set the Determinant Equal to Zero Since we have \( \Delta = 0 \), we have two cases: 1. \( x + z - 2y = 0 \) 2. \( 2z - y = 0 \) From the first equation, we can express \( x + z = 2y \), which implies: \[ x + z = 2y \implies \frac{x + z}{2} = y \] This indicates that \( x, y, z \) are in Arithmetic Progression (AP). ### Final Answer Thus, the relation between \( x, y, z \) is: \[ x + z = 2y \quad \text{(or equivalently, } y = \frac{x + z}{2}\text{)} \]

To solve the problem, we need to evaluate the determinant given by: \[ \Delta = \begin{vmatrix} 3 & 4 & 5 & x \\ 4 & 5 & 6 & y \\ 5 & 6 & 7 & z \\ x & y & z & 0 ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If x, y , z are in A.P., then the value of the det (A) is , where A = [(4,5,6,x),(5,6,7,y),(6,7,8,z),(x,y,z,0)]

Let |{:(y^(5)z^(6)(z^(3)-y^(3)),,x^(4)z^(6)(x^(3)-z^(3)),,x^(4)y^(5)(y^(3)-x^(3))),(y^(2)z^(3)(y^(6)-z^(6)),,xz^(3)(z^(6)-x^(6)) ,,xy^(2)(x^(6)-y^(6))),(y^(2)^(3)(z^(3)-y^(3)),,xz^(3)(x^(3)-z^(3)),,xy^(2)(y^(3)-x^(3))):}| " and " Delta_(2)= |{:(x,,y^(2),,z^(3)),(x^(4),,y^(5) ,,z^(6)),(x^(7),,y^(8),,z^(9)):}| .Then Delta_(1)Delta_(2) is equal to

If x,y,z in R & Delta =|(x,x+y,x+y+z),(2x,5x+2y,7x+5y+2z),(3x,7x+3y,9x+7y+3z)|=-16 then the value of x is

find the values of x,y and zfrom the following equations : (i) [{:(4,3),(x,5):}]=[{:(y,z),(1,5):}] (ii) [{:(x+y,2),(5+z,xy):}]=[{:(6,2),(5,8):}] (iii) [{:(x+y+z),(x+z),(y+z):}]=[{:(9),(5),(7):}]

The corner points of the feasible region of a system of linear inequations are (0, 0), (5, 0), (6,5), (6, 8), (4, 10) and (0,8). If Z = 3x - 4y, then the minimum value of Z occurs at:

If A=[{:(2,3,10),(4,-6,5),(6,9,-20):}] , find A^(-1) . Using A^(-1) , solve the system of equations : {:((2)/(x)+(3)/(y)+(10)/(z)=2),((4)/(x)-(6)/(y)+(5)/(z)=5),((6)/(x)+(9)/(y)-(20)/(z)=-4):}

If A = [(5, -1, 4), (2, 3, 5), (5, -2, 6)] , find A^(-1) and use it to solve the following system of equation 5x - y + 4z = 5, 2x + 3y +5z = 2, 5x - 2y + 6z =-1