Home
Class 12
MATHS
In triangle ABC, if |[1,1,1], [cot (A/2)...

In triangle ABC, if `|[1,1,1], [cot (A/2), cot(B/2), cot(C/2)], [tan(B/2)+tan(C/2), tan(C/2)+ tan(A/2), tan(A/2)+ tan(B/2)]|` then the triangle must be (A) Equilateral (B) Isoceless (C) Right Angle (D) none of these

A

equilateral

B

isosceles

C

obtuse angled

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

Applying `C_(1) to C_(1)-C_(2),C_(2) to C_(2)-C_(3)` we get
`|{:(0,,0,,1),(cot .(A)/(2)-cot.(B)/(2),,cot.(B)/(2)-cot.(C)/(2),,cot.(C)/(2)),(tan.(B)/(2)-tan.(A)/(2),,tan.(C)/(2)-tan.(B)/(2),,tan.(A)/(2)+tan.(B)/(2)):}|`
`|{:(0,,0,,1),(cot.(A)/(2)-cot.(B)/(2),,cot.(B)/(2)-cot.(C )/(2),,cot.(C)/(2)),((cot.(A)/(2)-cot.(B)/(2))/(cot.(A)/(2)-cot.(A)/(2)),,(cot.(B)/(2)-cot.(C)/(2))/(cot.(B)/(2)cot.(C)/(2)),,tan.(A)/(2)+tan.(B)/(2)):}|`
`=( cot .(A)/(2)-cot.(B)/(2))(cot.(B)/(2)-cot.(C)/(2))`
`xx |{:(0,,0,,0),(1,,1,,cot.(C)/(2)),(tan.(A)/(2)-cot.(B)/(2),,tan.(B)/(2)tan.(C)/(2),,tan.(A)/(2).tan.(B)/(2)):}|`
`=(cot.(A)/(2)-cot.(B)/(2))(cot.(B)/(2)-cot.(C)/(2))(tan.(C)/(2)-tan.(A)/(2))tan.(B)/(2)`
Since `Delta =0 ` we have
:. `cot .(A)/(2)=cot.(B)/(2) " or " cor .(B)/(2) -cot .(C)/(2)" or " tan.(A)/(2) =tan .(C)/(2)`
Hence the triangle is definitely isosceles.
Promotional Banner

Similar Questions

Explore conceptually related problems

v) tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1

In triangle ABC, if 1,1cot(A)/(2),cot(B)/(2)tan(B)/(2)+tan(C)/(2)quad tan(B)/(2)+tan(A)/(2)quad tan(A)/(2)+tan(B)/(2) obtuse angled d.none of these

Delta ABC,tan A+tan B+tan C=6 and tan A tan B=2 then the triangle is

In a Delta ABC ,if 3 tan (A/2) tan (C/2)=1 then a,b,c are in

In triangle ABC, if cot A*cot C=(1)/(2)andcot B*cot C=(1)/(18) then the value of tan C is

In triangle ABC, if r_(1)=3r, then the value of tan((A)/(2))(tan((B)/(2))+tan((C)/(2))) is equal to

If tan^(2)A+tan^(2)B+tan^(2)C-tan B tan C-tan C tan A-tan A tan B then Delta ABC is (i) Isosceles (ii) Right Angled (iii) Equilateral (iv) Right angled isosceles

In triangle ABC , prove that tan((C-A)/(2))=((c-a)/(c+a))cot(B)/(2) .

If in triangle ABC (r)/(r_(1))=(1)/(2), then the value of tan(A/2)(tan(B/2)+tan(C/2)) is equal to