Home
Class 12
MATHS
Let overset(to)(a(r))=x(r )hat(i)+y(r )h...

Let `overset(to)(a_(r))=x_(r )hat(i)+y_(r )hat(j)+z_(r )hat(k),r=1,2,3` three mutually prependicular unit vectors then the value of `|{:(x_(1),,-x_(2),,x_(3)),(y_(1),,y_(2) ,,y_(3)),(z_(1),,z_(2),,z_(3)):}|` is equal to

A

zero

B

`+-1`

C

`+-2`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

`Delta =|{:(x_(1),,x_(2),,x_(3)),(y_(1),,y_(2),,y_(3)),(z_(1),,z_(2),,z_(3)):}|=|{:(x_(1),,y_(1),,z_(1)),(x_(2),,y_(2),,z_(2)),(x_(3),,y_(3),,z_(3)):}|`
`:. Delta^(2) = |{:(x_(1),,y_(1),,z_(2)),(x_(2),,y_(2),,z_(2)),(x_(3),,y_(3),,z_(3)):}||{:(x_(1),,y_(1),,z_(1)),(x_(2),,y_(2),,z_(2)),(x_(3),,y_(3),,z_(3)):}|`
`=|{:(x_(1)^(2)+y_(1)^(2)+z_(1)^(2),,x_(1)x_(2)+y_(1)y_(2)+z_(1)z_(2),,x_(1)x_(3)+y_(1)y_(3)+z_(1)z_(3)),(x_(1)x_(2)+y_(2)y_(1)+z_(2)z_(1),,x_(2)^(2)+y_(2)^(2)+z_(2)^(2),,x_(2)x_(3)+y_(2)y_(3)+z_(2)z_(3)),(x_(3)x_(1)+y_(3)y_(1)+z_(3)z_(1),,x_(2)x_(3)+y_(2)y_(3)+z_(2)z_(3),,x_(3)^(2)+y_(3)^(2)+z_(3)^(2)):}|`
`=|{:(1,,0,,0),(0,,1,,0),(0,,0,,1):}|=1 rArr Delta =+- 1`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec a_r=x_r hat i+y_r hat j+z_r hat k ,r=1,2,3 be three mutually perpendicular unit vectors, then the value of |[x_1,x_2,x_3],[y_1,y_2,y_3],[z_1,z_2,z_3]| is equal to 0 b. +-1 c. +-2 d. none of these

If vec a_r=x_r hat i+y_r hat j+z_r hat k , where r=1,2,3 are three mutually perpendicular unit vectors, then possible values of the determinant |x_1x_2x_3y_1y_2y_3z_1z_2z_3|a r e

Let overset(to)(a) =a_(1) hat(i) + a_(2) hat(j) + a_(3) hat(k) , overset(to)(a) = b_(1) hat(i) +b_(2) hat(j) +b_(3) hat(k) " and " overset(to)(a) = c_(1) hat(i) +c_(2) hat(j) + c_(3) hat(k) be three non- zero vectors such that overset(to)(c ) is a unit vectors perpendicular to both the vectors overset(to)(c ) and overset(to)(b) . If the angle between overset(to)(a) " and " overset(to)(n) is (pi)/(6) then |{:(a_(1),,a_(2),,a_(3)),(b_(1),,b_(2),,b_(3)),(c_(1),,c_(2),,c_(3)):}| is equal to

If x hat(i) + y hat(j) + z hat(k) is a unit vector and x:y:z= sqrt3:2:3 then what is the value of z?

If x hat(i)+ y hat(j)+zhat(k) is a unit vector and x:y:z=sqrt(3):2:3 , then what is the value of z?

|{:(.^(x)C_(r),,.^(x)C_(r+1),,.^(x)C_(r+2)),(.^(y)C_(r),,.^(y)C_(r+1),,.^(y)C_(r+2)),(.^(z)C_(r),,.^(z)C_(r+1),,.^(z)C_(r+2)):}| is equal to

A=[[2,0,00,2,00,0,2]] and B=[[x_(1),y_(1),z_(1)x_(2),y_(2),z_(2)x_(3),y_(3),z_(3)]]

If vec(E)=2x^(2) hat(i)-3y^(2) hat(j) , then V (x, y, z)

Let vec(V) =v_(x)hat(i)+v_(y)hat(j)+v_(z)hat(k) , then int_(t_(1))^(t_(2)) V_(y) represents: (for the duration t_(1) to t_(2))