Home
Class 12
MATHS
Let |{:(y^(5)z^(6)(z^(3)-y^(3)),,x^(4)...

Let
`|{:(y^(5)z^(6)(z^(3)-y^(3)),,x^(4)z^(6)(x^(3)-z^(3)),,x^(4)y^(5)(y^(3)-x^(3))),(y^(2)z^(3)(y^(6)-z^(6)),,xz^(3)(z^(6)-x^(6)) ,,xy^(2)(x^(6)-y^(6))),(y^(2)^(3)(z^(3)-y^(3)),,xz^(3)(x^(3)-z^(3)),,xy^(2)(y^(3)-x^(3))):}| " and " Delta_(2)= |{:(x,,y^(2),,z^(3)),(x^(4),,y^(5) ,,z^(6)),(x^(7),,y^(8),,z^(9)):}| `.Then `Delta_(1)Delta_(2)` is equal to

A

`Delta_(2)^(6)`

B

`Delta_(2)^(4)`

C

`Delta_(2)^(3)`

D

`Delta_(2)^(2)`

Text Solution

Verified by Experts

The correct Answer is:
C

the given determinant `Delta_(1)` is obtained by corresponding cofactors or determinant `Delta_(2)` and hence `Delta_(1)= Delta_(2)^(2)`
Now `Delta_(1)Delta_(2) =Delta_(2)^(2) Delta_(2) =Delta_(2)^(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following : |{:(x,y,z),(x^(2),y^(2),z^(2)),(x^(3),y^(3),z^(3)):}|=|{:(x,x^(2),x^(3)),(y,y^(2),y^(3)),(z,z^(2),z^(3)):}|=xyz(x-y)(y-z)(z-x)

" (d) "|[x,y,z],[x^(2),y^(2),z^(3)],[yz,zx,xy]|=|[1,1,1],[x^(3),y^(2),z^(2)],[x^(3),y^(3),z^(3)]|

Factorize: ((x)/(2)+y+(z)/(3))^(3)+((x)/(3)-(2y)/(3)+z)^(3)+(-(5x)/(6)-(y)/(3)-(4z)/(3))^(3)

if Delta= |{:(3,,4,,5,,x),(4,,5,,6,,y),(5,,6,,7,,z),(x,,y,,z,,0):}|=0 then

3^4x^3y^6z^4xx27x^(-2)z^(-6)div81xy^(2)z^(-3)= ______

3^(x)+3^(y)+3^(z)+3^(t)=24,log_(z)x+log_(z)t=y,(x)/(x^(4)+y^(2))+(y)/(x^(2)+y^(4))=(1)/(xy)

Divide the given polynomial by the given monomial.( i (5x^(2)-6x)-:3x (ii) (3y^(8)-4y^(6)+5y^(4))-:y^(4)( iii) 8(x^(3)y^(2)z^(2)+x^(2)y^(3)z^(2)+x^(2)y^(2)z^(3))-:4x^(2)y^(2)z^(2)(iv)(x^(3)+2x^(2)+3x)-:2x(v)(p^(3)q^(6)-p^(6)q^(3))-:p^(3)q^(3)