Home
Class 12
MATHS
Value of |{:(1+x(1),,1+x(1)x,,1+x(1)x^(2...

Value of `|{:(1+x_(1),,1+x_(1)x,,1+x_(1)x^(2)),(1+x_(2),,1+x_(2)x,,1+x_(2)x^(2)),(1+x_(3),,1+x_(3)x,,1+x_(3)x^(2)):}|` depends upon

A

`x` only

B

`x_(1)`only

C

`x_(2)`only

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \[ D = \begin{vmatrix} 1 + x_1 & 1 + x_1 x & 1 + x_1 x^2 \\ 1 + x_2 & 1 + x_2 x & 1 + x_2 x^2 \\ 1 + x_3 & 1 + x_3 x & 1 + x_3 x^2 \end{vmatrix} \] we can analyze it step by step. ### Step 1: Rewrite the Determinant We can express the determinant in a more manageable form. Notice that each row has a common structure. We can factor out common terms. ### Step 2: Factor Out Common Elements Let's factor out \(1\) from each row: \[ D = \begin{vmatrix} 1 + x_1 & 1 + x_1 x & 1 + x_1 x^2 \\ 1 + x_2 & 1 + x_2 x & 1 + x_2 x^2 \\ 1 + x_3 & 1 + x_3 x & 1 + x_3 x^2 \end{vmatrix} \] This determinant can be simplified by observing that if we subtract the first column from the second and the third columns, we can simplify our calculations. ### Step 3: Perform Column Operations Subtract the first column from the second and third columns: \[ D = \begin{vmatrix} 1 + x_1 & x_1 x & x_1 x^2 \\ 1 + x_2 & x_2 x & x_2 x^2 \\ 1 + x_3 & x_3 x & x_3 x^2 \end{vmatrix} \] ### Step 4: Factor Out \(x_1\), \(x_2\), and \(x_3\) Now, we can factor out \(x_1\), \(x_2\), and \(x_3\) from the second and third columns: \[ D = \begin{vmatrix} 1 + x_1 & x_1 & x_1 \\ 1 + x_2 & x_2 & x_2 \\ 1 + x_3 & x_3 & x_3 \end{vmatrix} \] ### Step 5: Analyze the Determinant Now, we can see that if we have two identical columns (the second and third columns are identical), the determinant will be zero: \[ D = 0 \] ### Conclusion The value of the determinant \(D\) is zero regardless of the values of \(x_1\), \(x_2\), and \(x_3\). Therefore, the value of the determinant does not depend on \(x_1\), \(x_2\), or \(x_3\). ### Final Answer The value of the determinant depends on **none of the variables**. ---

To solve the determinant \[ D = \begin{vmatrix} 1 + x_1 & 1 + x_1 x & 1 + x_1 x^2 \\ 1 + x_2 & 1 + x_2 x & 1 + x_2 x^2 \\ 1 + x_3 & 1 + x_3 x & 1 + x_3 x^2 \end{vmatrix} ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: |[1+x_(1),x_(2),x_(3)],[x_(1),1+x_(2),x_(3)],[x_(1),x_(2),1+x_(3)]|=1+x_(1)+x_(2)+x_(3)

Value of |1+x_1 1+x_1x1+x_1x^2 1+x_2 1+x_2x1+x_2x^2 1+x_3 1+x_3x1+x_3x^2| depends upon "xo n l y" b. "x"_1"o n l y" c. "x"_2on l y d. none of these

If x_(1),x_(2),x_(3) are the roots of x^(3)+ax^(2)+b=0, the value of x_(2)x_(3),x_(1)x_(3),x_(1),x_(2)]|

The value of ,2x_(1)y_(1),x_(1)y_(2)+x_(2)y_(1),x_(1)y_(3)+x_(3)y_(1)x_(1)y_(2)+x_(2)y_(1),2x_(2)y_(2),x_(2)y_(3)+x_(3)y_(2)x_(1)y_(3)+x_(3)y_(1),x_(2)y_(3)+x_(3)y_(2),2x_(3)y_(3)]| is

If f(x)=|{:(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x(x-1)):}| then

What is the area of the triangle with vertices (x_(1),(1)/(x_(1))),(x_(2),(1)/(x_(2))),(x_(3),(1)/(x_(3))) ?

Let the equation x^(5) + x^(3) + x^(2) + 2 = 0 has roots x_(1), x_(2), x_(3), x_(4) and x_(5), then find the value of (x_(2)^(2) - 1)(x_(3)^(2) - 1)(x_(4)^(2) - 1)(x_(5)^(2) - 1).

If x_(1),x_(2),x_(3) are in GP, and x_(1)>1,x_(2)>1,x_(3)>1 then are in (1)/(1+ln x_(1)),(1)/(1+ln x_(2)),(1)/(1+ln x_(3)) and

(1-2x+x^(2))/(1-x^(3))times(1+x+x^(2))/(1+x)