Home
Class 12
MATHS
If |a^2+lambda^2a b+clambdac a-blambdaa ...

If `|a^2+lambda^2a b+clambdac a-blambdaa b-clambdab^2+lambda^2b c+a c a+blambdab c-alambdac^2+lambda^2||lambdac-b-clambdaa b-alambda|=(1+a^2+b^2+c^2)^3` , then he value of `lambda` is `8` b. `27` c. `1` d. `-1`

A

8

B

27

C

1

D

-1

Text Solution

Verified by Experts

The correct Answer is:
C

We obserive that the elements in the pre -factor are the cofactors of the corresponding elements of the post factor .Hence
`|{:(lambda,,c,,-b),(-c,,lambda,,a),(b,,-a,,lambda):}|= [lambda (lambda^(2) +a^(2)+b^(2)+c^(2))]^(3) =(1+a^(2)+b^(2)+c^(2))^(3)`
`rArr lambda=1`
Alternate solution:
Writing `a=0, b=0c c=0` on both sides we get
`lambda^(6)lambda^(3) =1" or " lambda=1`
Promotional Banner

Similar Questions

Explore conceptually related problems

|[a^(2)+lambda^(2),ab+c lambda,ca-b lambdaab-c lambda,b^(2)+lambda^(2),bc+aca+b lambda,bc-a lambda,c^(2)+lambda^(2) then he value of lambda is 8 b.27, c.1 d.-1=(1+a^(2)+b^(2)+c^(2))^(3)

if [[-a^2,ab,ac],[ab,-b^2,bc],[ac,bc,-c^2]]=lambda a^2b^2c^2 then find the value of lambda

If |[lambda^(2),-lambda,2 lambda-1],[lambda+2,1-lambda,lambda],[lambda+2,lambda+1,-lambda]|=a lambda^(4)+b lambda^(3)+c lambda^(2)+d lambda+e Then values of a, b, c, d and e are.

If a lambda^(4)+b lambda^(3)+c lambda^(2)+d lambda+e=|[lambda^(2)-3,lambda-1,lambda+sqrt(3)],[lambda^(2)+lambda,2 lambda-4,3 lambda+1],[lambda^(2)-3 lambda,3 lambda+5,lambda-3]| then |a| equals

If a lambda^(4)+b lambda^(3)+c lambda^(2)+d lambda+e = |[lambda^(2)-3,-1,lambda+sqrt(3)],[lambda^(2)+lambda,2 lambda-4,3 lambda+1],[lambda^(2)-3 lambda,3 lambda+5,lambda-3]| then |a| equals

det [[lambda ^ (4) +2 lambda ^, 2 lambda ^ (3) -3,3 lambda ^ (2) + lambda2,3,15,0,2]] = a lambda ^ (4) + b lambda ^ (3) + c lambda ^ (2) + d lambda + e

If the points A(lambda, 2lambda), B(3lambda,3lambda) and C(3,1) are collinear, then lambda=

If the vectors a+lambda b+3c,-2a+3b-4c and a-3b+5c are coplanar and a,b,c are non-coplanar,then the value of lambda is

If [(lambda^(2)-2lambda+1,lambda-2),(1-lambda^(2)+3lambda,1-lambda^(2))]=Alambda^(2)+Blambda+C, where A, B and C are matrices then A+B=