Home
Class 12
MATHS
Let |(x,2,x),(x^(2),x,6),(x,x,6)| = ax^(...

Let `|(x,2,x),(x^(2),x,6),(x,x,6)| = ax^(4) + bx^(3) + cx^(2) + dx + e` Then, the value of `5a + 4b + 3c + 2d + e` is equal to

A

zero

B

-16

C

16

D

-11

Text Solution

Verified by Experts

The correct Answer is:
D

Let the given determinant be equal to `Delta (x). ` Then
`5A +4B +3C + 2D + E =Delta (1) +Delta (1)`
Now `Delta (1)=0` as `R_(2)` and `R_(3)` are identical .
`Delta (x) = |{:(1,,0,,1),(x^(2),,x,,6),(x,,x,,6):}|+|{:(x,,2,,x),(2x,,1,,0),(x,,x,,6):}|+|{:(x,,2,,x),(x^(2),,x,,6),(1,,1,,0):}|`
`Delta (1) =|{:(1,,2,,1),(2,,1,,0),(1,,1,,6):}|+|{:(x,,2 ,,x),(x^(2),,x,,6),(1,,1,,0):}|`
`Delta'(1) = |{:(1,,2,,1),(2,,1,,0),(1,,1,,6):}|+|{:(1,,2,,1),(1,,1,,6),(1,,1,,0):}|`
`=-17 +(12 +1-1-6)=-11`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let |{:(x,2,x),(x^(2),x,6),(x,x,6):}|=Ax^(4)+Bx^(3)+Cx^(2)+Dx+E the value of 5A+4B+3C+2D+E is equal to

Let |x2xx^2x6xx6|=a x^4+b x^3+c x^2+dx+edot Then, the value of 5a+4b+3c+2d+e is equal 0 (b) -16 (c) 16 (d) none of these

If the expression |{:(x^2+x+3,1,4),(2x^4+x^3+2x+1,2,3),(x^2+x,1,1):}| is equal to ax^4+bx^3+cx^2+dx+e , then the value of e is equal to

If the expression |{:(x^2+x+3,1,4),(2x^4+x^3+2x+1,2,3),(x^2+x,1,1):}| is equal to ax^4+bx^3+cx^2+dx+e , then the value of e is equal to

If (x+2) and (x-2) are factors of ax^4 + 2x - 3x^2 + bx - 4 , then the value of a + b is

Let |x2xx^2x6xx6|=A x^4+B x^3+C x^2+D x+Edot Then the value of 5A+4B+3C+2D+E is equal to a. zero b. -16 c. 11 d. 11

Let |(1 +x,x,x^(2)),(x,1 +x,x^(2)),(x^(2),x,1 +x)| = ax^(5) + bx^(4) + cx^(3) + dx^(2) + lamdax +mu be an identity in x, where a, b, c, lamda, mu are independent of x. Then, the value of lamda is

If sin^(2)A=x and Pi sin(rA)=ax^(2)+bx^(3)+cx^(4)+dx^(5) then value of a+b+c+d is

If x^(2)-1 is a factor of ax^(4)+bx^(3)+cx^(2)+dx+e, show that a+c+e=b+d