Home
Class 12
MATHS
Let f(x) = |(2cos^2x, sin2x, -sinx), (si...

Let `f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)|`, then the value of `int_0^(pi//2){f(x) + f'(x)} dx` is

A

`pi`

B

`pi//2`

C

`2pi`

D

`3pi//2`

Text Solution

Verified by Experts

The correct Answer is:
A

Applying `C_(1) to C_(1) -2 sin xC_(3) " and " C_(2) to C_(2) +2 cos x C_(3) ` we get
`f(x)= |{:(2,,0,,-sin x),(0,,2,,cos x),(sin x ,,-cos x ,,0):}|`
`=2 cos^(2) x+ 2sin^(2) x=2`
`:. F(x) =0`
`:. int_(0)^(pi//2) [f(x)+ f'(x) =dx = int_(0)^(pi//2) 2dx =pi`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)|, the value of int_0^(pi//2){f(x) + f'(x)} dx, is

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)|, the value of int_0^(pi//2){f(x) + f'(x)} dx, is (i)pi/2 (ii)pi (iii)(3pi)/2 (iv)2pi

If f(x)=|(sin x+sin x 2x+sin3x,sin2x,sin3x),(3+4sinx,3,4sinx),(1+sinx,sinx,1)|, then the value of int_0^(pi/2) f(x) dx is

Let f(x)= |{:(cosx,sinx,cosx),(cos2x,sin2x,2cos2x),(cos3x,sin3x,3cos3x):}| then find the value of f'((pi)/(2)) .

Let Delta(x)=|(cos^(2)x,cosxsinx,-sinx),(cosxsinx,sin^(2)x,cosx),(sinx,-cosx,0)| then int_(0)^(pi//2){Delta(x)+Delta'(x)]dx equals

If f(x) = |{:(cos^(2)x, cosx.sinx, -sin x),(cos x sinx ,sin^(2)x ,cos x),(sinx , -cos x , 0):}| then for all x

If f(x) = |{:(cos^(2)x, cosx.sinx, -sin x),(cos x sinx ,sin^(2)x ,cos x),(sinx , -cos x , 0):}| then for all x

If Delta=|[2 cos^2 x, sin 2x, -sin x] , [sin 2x, 2sin^2x, cos x] ,[sinx, -cosx, 0] |, , then int_0^(pi/2) (Delta+Delta') dx is equal to