Home
Class 12
MATHS
If alpha,beta,gamma are the angles of a ...

If `alpha,beta,gamma` are the angles of a triangle and system of equations `cos(alpha-beta)x+cos(beta-gamma)y+cos(gamma-alpha)z=0` `cos(alpha+beta)x+cos(beta+gamma)y+cos(gamma+alpha)z=0` `sin(alpha+beta)x+sin(beta+gamma)y+sin(gamma+alpha)z=0` has non-trivial solutions, then triangle is necessarily a. equilateral b. isosceles c. right angled`""` d. acute angled

A

equiliateral

B

isosoceles

C

right angled

D

acute angled

Text Solution

Verified by Experts

The correct Answer is:
B

Let `Delta = |{:(cos (alpha -beta),,cos (beta-gamma),,cos (gamma-alpha)),(coa(alpha+beta),,cos(beta+gamma),,cos(gamma+alpha)),(sin(alpha+beta),,sin(beta+gamma),,sin(gamma+alpha)):}|`
It is clear that either `alpha =beta " or " beta = gamma " or " gamma =alpha ` is suffieicient to make `Delta =0 ` . It is not necessary that triangle is equilateral.
Also isosceles traingle can be obtuse one.
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are the angles of a triangle and system of equations cos(alpha-beta)x+cos(beta-gamma)y+cos(gamma-alpha)z=0cos(alpha+beta)x+cos(beta+gamma)y+cos(gamma+alpha)z=0sin(alpha+beta)x+sin(beta+gamma)y+sin(gamma+alpha)z=0 has non-trivial solutions,then triangle is necessarily a.equilateral b.isosceles c.right angled

Prove that : cos^2 (beta-gamma) + cos^2 (gamma-alpha) + cos^2 (alpha-beta) =1+2cos (beta-gamma) cos (gamma-alpha) cos (alpha-beta) .

cos (alpha + beta) cos gamma-cos (beta + gamma) cos alpha = sin beta sin (gamma-alpha)

cos(alpha-beta)+cos(beta-gamma)+cos(gamma-alpha)=-(3)/(2), prove that cos alpha+cos beta+cos gamma=sin alpha+sin beta+sin gamma=0

cos(alpha-beta)+cos(beta+gamma)+cos(gamma-alpha)=-(3)/(2) prove that: cos alpha+cos beta+cos gamma=sin alpha+sin beta+sin gamma=0

If alpha,beta,gamma are the lengths of the altitudes of Delta ABC, then (cos A)/(alpha)+(cos B)/(beta)+(cos C)/(gamma)=

Let cos(alpha-beta) + cos(beta - gamma) + cos(gamma - alpha)= -3/2 , then the value of cos alpha + cos beta + cos gamma is

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta) =

det [[1, cos (beta-alpha), cos (gamma-alpha) cos (alpha-beta), 1, cos (gamma-beta) cos (beta-alpha), cos (beta-gamma), 1]] =

Prove that cos alpha+cos beta+cos gamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/(2))cos((beta+gamma)/(2))cos((gamma+alpha)/(2))