Home
Class 12
MATHS
If c<1 and the system of equations x+y-1...

If `c<1` and the system of equations `x+y-1=0,2x-y-c=0, "and "b x+3b y-c=0` is consistent, then the possible real values of `b` are

A

`b in (-3(3)/(4))`

B

` b in (-(3)/(2) ,4)`

C

`b in (-(3)/(4),3)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

the given system is consistent . Therefore
`Delta =|{:(1,,1,,-1),(2,,-1,,-c),(-b,,3b,,-c):}|=0`
`" or " c+bc -6b +b+ 2c+ 3bc=0`
`" or " 3c+4bc-5b=0`
`" or " 3c+ 4bc -5b =0`
`" or " c=(5b)/(4b+3)`
Now `c lt 1`
`rArr (5 b)/(4b+3) lt 1 `
`" or " .(5b)/(4b +3) -1 lt 0`
`rArr b in (-(3)/(4),3)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If a+b+c=0 , then the value of ((a+b)/(c)+(b+c)/(a)+(c+a)/(b)) ((a)/(b+c)+(b)/(c+a)+(c)/(a+b)) is

If a+b+c= 0, then the value of ((a+b)/c + (b+c)/a + (c+a)/b) ((a)/(b+c) + b/(c+a) + c/(a+b)) is :

If a+b+c= 0 , then ((a+b)/(c ) + (b+c)/(a) + (c+ a)/(b)) ((c )/(a+b) + (b)/(a+c) + (a)/(b+c)) = ?

If for z as real or complex,(1+z^(2)+z^(4))^(8)=C_(0)+C1z2+C2z4++C_(16)z^(32)then(a)C_(0)-C_(1)+C_(2)-C_(3)+C_(16)=1(b)C_(0)+C_(3)+C_(6)+C_(9)+C_(12)+C_(15)=3^(7)(c)C_(2)+C_(5)+C_(6)+C_(11)+C_(14)=3^(6)(d)C_(1)+C_(4)+C_(7)+C_(10)+C_(13)+C_(16)=3^(7)

If for z as real or complex . (1+z^(2) + z^(4))^(8) = C_(0) C_(1) z^(2) C_(2) z^(4) + …+ C_(16) z^(32) , prove that C_(0) + C_(3) + C_(6) + C_(9) + C_(12) + C_(15) + (C_(2) + C_(5) + C_(8) + C_(11) + C_(14)) + (C_(1) + C_(4) + C_(7) + C_(10) + C_(16)) omega^(2) = 0 , where omega is a cube root of unity .

If a!=b!=c\ a n d\ |{:(a, b, c), (a^2,b^2,c^2), (b+c, c+a, a+b):}|=0 then a+b+c=0 b. a b+b c+c a=0 c. a^2+b^2+c^2=a b+b c+c a d. a b c=0

If (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b), then prove that (a^(a))(b^(c))(c^(c))=1