Home
Class 12
MATHS
Let lambda and alpha be real. Then the ...

Let `lambda` and `alpha` be real. Then the numbers of intergral values `lambda` for which the system of linear equations
`lambdax +(sin alpha) y+ (cos alpha) z=0`
`x + (cos alpha) y+ (sin alpha) z=0`
`-x+(sin alpha) y -(cos alpha) z=0` has non-trivial solutions is

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
D

The given system has non=trivial solution if
`|{:(lambda,,sin alpha,,cos alpha),(1,,cos alpha,,sin alpha),(-1,,sin alpha,,-cos alpha):}|=0`
By expanding the determinant along first column we get
`lambda =sin 2alpha +cos 2alpha`
We know that
`-sqrt(2) le sin 2alpha + cos 2 alpha le sqrt(2)`
`:. -sqrt(2) le lambda le sqrt(2)`
hence integral values of `lambda` are -1 ,0 and 1
Promotional Banner

Similar Questions

Explore conceptually related problems

Let lambda and alpha be real. Find the set of all values of lambda for which the system of linear equations lambdax + ("sin"alpha)y + ("cos" alpha)z =0 , x + ("cos"alpha)y + ("sin" alpha) z =0 and -x + ("sin" alpha)y -("cos" alpha)z =0 has a non-trivial solution. For lambda =1 , find all values of alpha .

Let lambda "and" alpha be real. Let S denote the set of all values of lambda for which the system of linear equations lambda x+(sinalpha)y+(cos alpha)z=0 x+(cos alpha) y+(sin alpha) z=0 -x+ (sin alpha) y-(cos alpha) z=0 has a non- trivial solution then S contains

The value of alpha for which the system of linear equations: x+(sin alpha)y+(cos alpha)z=0,x+(cos alpha)y+(sin alpha)z=0,-x+(sin alpha)y+(-cos alpha)z=0 has a non - trivial solution could be

Let lambda and alpha be real.Find the set of all values of lambda for which the system of linear equations lambda x+(sin alpha)y+(cos alpha)z=0,x+(cos alpha)y+(sin alpha)z=0,quad -x+(sin alpha)y-(cos alpha)z=0

If (2sin alpha) / ({1 + cos alpha + sin alpha}) = y, then ({1-cos alpha + sin alpha}) / (1 + sin alpha) =

If system of equations (tan alpha)x+(cot alpha)y+(8cos2 alpha)z=0

If A_(alpha), = [{:(cos alpha , sin alpha),(-sin alpha , cos alpha):}] , then

The number of values of alpha in [-10pi, 10pi] for which the equations (sin alpha)x-(cos alpha)y+3z=0, (cos alpha)x+(sin alpha)y-2z=0 and 2x+3y+(cos alpha)z=0 have nontrivial solution is

Eliminate alpha , if x = r cos alpha , y = r sin alpha .

If alpha + beta + gamma = 2pi , then the system of equations x + (cos gamma)y + (cos beta)z = 0 (cos gamma) x + y + (cos alpha)z = 0 (cos beta )x + (cos alpha)y + z = 0 has :