Home
Class 12
MATHS
If f(x)=|a-1 0a x a-1a x^2a x a|,t h e n...

If `f(x)=|a-1 0a x a-1a x^2a x a|,t h e nf(2x)-f(x)` is divisible by `a` b. `b` c.`c ,d ,e` d. none of these

A

x

B

a

C

`2a+3x`

D

`x^(2)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C

Applying `R_(3) to R_(3) -xR_(2) " and " R_(2) to R_(2)-xR_(1)` we get
`f(x)= |{:(a,,-1,,0),(0,,a+x,,-1),(0,,0,,a+x):}|=a(a+x)^(2)`
hence
`f(2x)- f(x) =a [(a+2x)^(2) -(a-x)^(2)]`
`=a(a+2x-a-x) (a+2x+a+x)`
`=ax (2a+3x)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=det[[a,-1,0ax,a,-1ax^(2),ax,a]], then f(2x)-f(x) is divisible by (a) a(b)b(c)c,d,e(d) none of these

If f(x)="cos"((log)_e x),t h e nf(x)f(y)-1/2[f(x/y)+f(x y)] has value (a) -1 (b) 1/2 (c) -2 (d) none of these

If f(x)=|0x-a x-b x+a0x-c x+b x+c0|,t h e n f(x)=0 (b) f(b)=0 (c) f(0)=0 f(1)=0

Let f(x)=a+b|x|+c|x|^(4), where a,b, and c are real constants.Then,f(x) is differentiable at x=0, if a=0( b) b=0 (c) c=0( d) none of these

Instead of the usual definition of derivative Df(x), if we define a new kind of derivative D^*F(x) by the formula D*f(x)=lim_(h->0)(f^2(x+h)-f^2(x))/h ,w h e r ef^2(x) mean [f(x)]^2 and if f(x)=xlogx ,then D^*f(x)|_(x=e) has the value (A)e (B) 2e (c) 4e (d) none of these

Let f(x)=a+b|x|+c|x|^(4), where a,b and c are real constants.Then,f(x) is differentiable at x=0, if a=0 (b) b=0( c) c=0(d) none of these

f(x)=(1n(x^2+e^x))/(1n(x^4+e^(2x)))dotT h e n lim_(x->oo)f(x) is equal to (a) 1 (b) 1/2 (c) 2 (d) none of these

If f(x)=(1-cos2x)/(x^(2)) , x!=0 and f(x) is continuous at x=0 ,then f(0)= (a) 1 (b) 2 (c) 3 (d) None of these

If for a continuous function f,f(0)=f(1)=0,f'(1)=2 and y(x)=f(e^(x))e^(f(x)) ,then y'(0) is equal to a.1 b.2 c.0 d.none of these

If f(x)= e^(coscos^-1x^2+tancot^-1 x^2), then minimum value of f(x) is (A) e (B) e^2 (C) e^(2/3 (D) none of these