Home
Class 12
MATHS
Delta= |{:(1,,1+ac,,1+bc),(1,,1+ad,,1+bd...

`Delta= |{:(1,,1+ac,,1+bc),(1,,1+ad,,1+bd),(1,,1+ae,,1+be):}|` is independent of

A

a

B

b

C

c,d,e

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant given by \[ \Delta = \begin{vmatrix} 1 & 1 + ac & 1 + bc \\ 1 & 1 + ad & 1 + bd \\ 1 & 1 + ae & 1 + be \end{vmatrix} \] we will perform some operations to simplify the determinant. ### Step 1: Apply column operations We will perform column operations to simplify the determinant. Specifically, we will subtract the first column from the second and third columns. \[ C_2 \rightarrow C_2 - C_1 \quad \text{and} \quad C_3 \rightarrow C_3 - C_1 \] This gives us: \[ \Delta = \begin{vmatrix} 1 & (1 + ac) - 1 & (1 + bc) - 1 \\ 1 & (1 + ad) - 1 & (1 + bd) - 1 \\ 1 & (1 + ae) - 1 & (1 + be) - 1 \end{vmatrix} \] This simplifies to: \[ \Delta = \begin{vmatrix} 1 & ac & bc \\ 1 & ad & bd \\ 1 & ae & be \end{vmatrix} \] ### Step 2: Factor out common terms Now, we can factor out common terms from the second and third columns. From column 2, we can factor out \(a\) and from column 3, we can factor out \(b\): \[ \Delta = ab \begin{vmatrix} 1 & c & d \\ 1 & e & f \\ 1 & g & h \end{vmatrix} \] ### Step 3: Evaluate the determinant Now, we notice that the first column is the same in all three rows. Therefore, the determinant will be zero because if two rows (or columns) of a determinant are identical, the value of the determinant is zero. Thus, we have: \[ \Delta = 0 \] ### Conclusion Since the determinant \(\Delta\) is zero, it indicates that the variables \(a\), \(b\), \(c\), \(d\), \(e\), and \(f\) are independent. Therefore, the correct options for independence are: - \(a\) and \(b\) - \(c\), \(d\), and \(e\)

To solve the determinant given by \[ \Delta = \begin{vmatrix} 1 & 1 + ac & 1 + bc \\ 1 & 1 + ad & 1 + bd \\ 1 & 1 + ae & 1 + be \end{vmatrix} ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of Delta = |(1,1 + ac,1 +bc),(1,1 + ad,1 + bd),(1 ,1 + ae,1 + be)| , is

|{:(1+a,c,1+bc),(1+a,b,1+bc),(1+a,e,1+bc):}| is equal to

Delta = |(1//a,1,bc),(1//b,1,ca),(1//c,1,ab)|=

The minor M_(31) if Delta = |(1, a, bc),(1, b, ca),(1, c, ab)| is

If 1 + (1)/(a) + (1)/(b) + (1)/(c) = 0 , then Delta = |(1 +a,1,1),(1,1 +b,1),(1,1,1 +c)| is equal to

If Delta=|{:(1,bc,a),(1,ca,b),(1,ab,c):}| , then minor of element ab is :

Delta=det[[1,a,bc1,b,ca1,c,ab]]

Prove that Delta = |{:(1,,1,,1),(a,,b,,c),(bc+1^(2),,ac+b^(2),,ab+c^(2)):}| = 2(a-b)(b-c)(c-1)

Suppose a,b,c and x real numbers. Let Delta=|(1+a,1+ax,1+ax^(2)),(1+b,1+bx,1+bx^(2)),(1+c,1+cx,1+cx^(2))| Then Delta is independent of

The determinant Delta=|{:(,a^(2)(1+x),ab,ac),(,ab,b^(2)(1+x),(bc)),(,ac,bc,c^(2)(1+x)):}| is divisible by