Home
Class 12
MATHS
the determinant Delta=|[a^2+x, ab, ac] ,...

the determinant `Delta=|[a^2+x, ab, ac] , [ab, b^2+x, bc] , [ac, bc, c^2+x]|` is divisible by

A

x

B

`x^(2)`

C

`x^(3)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A, B

`Delta =|{:(a^(3)+ax,,ab,,ac),(a^(2)b,,b^(2)+x,,bc),(a^(2)c,,bc,,c^(2)+x):}|`
Applying `C_(1) to C_(1) +bC_(2) +cC_(3)" and taking " a^(2)+b^(2)+c^(2)+x` common we get
`Delta =(1)/(a)(a^(2) +b^(2) +c^(2)+x ) |{:(a,,ab,,ac),(b,,b^(2)+x,,bc),(c,,bc,,c^(2)+x):}|`
Applying `C_(2) to C_(2) -bC_(1) " and " C_(3) to C_(3) -cC_(1) ` we get
`Delta =(1)/(a) (a^(2) +b^(2)+c^(2)+x) |{:(a,,0,,0),(b,,x,,0),(c,,0,,x):}|`
`=(1)/(a) (a^(2) +b^(2)+c^(2) +x) (ax^(2))`
`= x^(2) (a^(2) +b^(2)+c^(2) +x)`
Thus `Delta ` is divisible by x and `x^(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The determinant Delta =|(a^2(1+x),ab,ac),(ab,b^2(1+x),bc), (ac,bc,c^2(1+x))| is divisible by 1)1+x 2)(1+x)^2 3)x^2 4) x^2+1

|[x^2+a^2,ab,ac] , [ab,x^2+b^2,bc] , [ac,bc,x^2+c^2]|=

Show that | [a^2 +lambda, ab, ac], [ab, b^2+lambda, bc], [ac, bc, c^2+lamda]| is divisible by lambda^2 and find the other factor

Without expanding the determinant, show that the determinant |{:(a^(2)+10,ab,ac),(ab,b^(2)+10,bc),(ac,bc,c^(2)+10):}| is divisible by 100

Using properties of determinants, prove that |[a^2, bc, ac+c^2] , [a^2+ab, b^2, ac] , [ab, b^2+bc, c^2]| = 4a^2b^2c^2

The determinant Delta=|{:(a^(2)+x^(2),ab,ac),(ab,b^(2)+x^(2),bc),(ac,bc,c^(2)+x^(2)):}| is divisible by

The determinant Delta = |(a^(2) + x^(2),ab,ac),(ab,b^(2) + x^(2),bc),(ac,bc,c^(2) + x^(2))| is divisible

The determinant Delta=|{:(,a^(2)(1+x),ab,ac),(,ab,b^(2)(1+x),(bc)),(,ac,bc,c^(2)(1+x)):}| is divisible by

If A=[[a^2,ab,ac],[ab,b^2,bc],[ac,bc,c^2]] and a^2+b^2+c^2=1, then A^2

Show that |[0,c,b] , [c,0,a] , [b,a,0]|^2=|[b^2+c^2, ab, ac] , [ab, c^2+a^2, bc] , [ac, bc, a^2+b^2]|