Home
Class 12
MATHS
the roots of the equations |{:(.^(x)C(...

the roots of the equations `|{:(.^(x)C_(r),,.^(n-1)C_(r),,.^(n-1)C_(r-1)),(.^(x+1)C_(r),,.^(n)C_(r),,.^(n)C_(r-1)),(.^(x+2)C_(r),,.^(n+1)C_(r),,.^(n+1)C_(r-1)):}|=0`

A

`x=n`

B

`x=n+1`

C

`x=n-1`

D

`x=n-2`

Text Solution

Verified by Experts

The correct Answer is:
A, C

`|{:(.^(x)C_(r),,.^(n-1)C_(r),,.^(n)C_(r)),(.^(x+1)C_(r),,.^(n)C_(r),,.^(n+1)C_(r)),(.^(x+2)C_(r),,.^(n+1)C_(r),,.^(n+2)C_(r)):}|=0`
`|{:((x!)/(r!(x-r!)),,((n-1)!)/(r!(n-r-1)!),,(n!)/(r!(n-r)!)),(((x+1)!)/(r!(x+1-r)!),,(n!)/(r!(n-r)!),,((n+1)!)/(r!(n-r+1)!)),(((x+2)!)/(r!(x+2-r)!),,((n+1)!)/(r!(n+1-r)!),,((n+2)!)/(r!(n-r+2)!)):}|=0`
Taking `(x!)/(r!(x-r)!)` common from `C_(1)` we have quadratic equations in x.
Now in (1) if we put `x=n-1,C_(1)` and `C_(2)` are the same hence x=n-1 is one root of the equation.
If we put x=n then `C_(1) `and `C_(3)` are same .hence x=n is the other root.
Promotional Banner

Similar Questions

Explore conceptually related problems

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=

Find the value of the determinant |(.^(n)C_(r-1),.^(n)C_(r),(r+1)^(n+2)C_(r+1)),(.^(n)C_(r),.^(n)C_(r+1),(r+2)^(n+2)C_(r+2)),(.^(n)C_(r+1),.^(n)C_(r+2),(r+3)^(n+2)C_(r+3))|

Prove that .^(n)C_(r)+^(n)C_(r-1)=^(n+1)C_(r)

If .^(n)C_(r-1)=.^(n)C_(3r) , find r.

Prove that : .^(n-1)C_(r)+.^(n-2)C_(r)+.^(n-3)C_(r)+.........+.^(r)C_(r)=.^(n)C_(r+1) .

Prove that ^nC_(r)+^(n-1)C_(r)+...+^(r)C_(r)=^(n+1)C_(r+1)