Home
Class 12
MATHS
" If " f(x) = |{:(3,,3x,,3x^(2)+2a^(2))...

`" If " f(x) = |{:(3,,3x,,3x^(2)+2a^(2)),(3x,,3x^(2)+2a^(2),,3x^(3)+6a^(2)x),(3x^(2)+2a^(2),,3x^(3)++6a^(2)x,,3x^(4)+12a^(2)x^(2)+2a^(4)):}|` then

A

f'(x)=0

B

y=f(x) is a straight line parallel to x-axis

C

`int_(0)^(2) f(x) dx=32 a^(4)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A, B

Applying `C_(3) to C_(3)-xC_(2) ,C_(2) to C_(2) -xC_(1)` we obtain
`Delta (x)= |{:(3,,0,,2a^(2)),(3x,,2a^(2),,4a^(2)x),(3x^(2)+2a^(2),,4a^(2)x,,6a^(2)x^(2)+2a^(4)):}|`
`=4a^(4) |{:(3,,0,,1),(3x,,1,,2x),(3x^(2)+2a^(2),,2x,,3x^(2)+a^(2)):}|`
Applying `C_(3) to C_(3) -xC_(2) `we get
`Delta (x) =4a^(4) |{:(3,,0,,1),(3x,,1,,x),(3x^(2)+2a^(2),,2x,,x^(2)+2a^(2)):}|`
Applying `C_(1) to C_(1)-3C_(3) ` we get
`Delta (x) =4a^(4) |{:(0,,0,,1),(0,,1,,x),(-4a^(2),,2x,,x^(2)+2a^(2)):}|=16a^(6)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Delta(x)=det[[3,3x,3x^(2)+2a^(2)3x,3x^(2)+2a^(2),3x^(3)+6a^(2)x3x^(2)+2a^(2),3x^(3)+6a^(2)x,3x^(4)+12a^(2)x^(2)+2a^(4)]]

((2x^(4)-3x^(3)-3x^(2)+6x-2)/(x^(2)-2))

(3x^2+2)(4x-3x^2)

(x^(2)-5x-6)/(x^(2)+3x+2)

f(x)=x^(3)-6x^(2)+11x-6,g(x)=x^(2)-3x+2

Simplify: (3x^(3)-2x^(2)-3x-3)-(x^(3)-2x^(2)+3x-4)

int(3x^(2)-2x+4)tan(x^(3)-x^(2)+4x-2)dx