Home
Class 12
MATHS
Let f (n) = |{:(n,,n+1,,n+1),(.^(n)P(n)...

Let `f (n) = |{:(n,,n+1,,n+1),(.^(n)P_(n),,.^(n+1)P_(n+1),,.^(n+2)P_(n+2)),(.^(n)C_(n),,.^(n+1)C_(n+1),,.^(n+2)C_(n+2)):}|` where the sysmbols have their usual neanings .then f(n) is divisible by

A

`n^(2)+n+1`

B

`(n+1)!`

C

`n!`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A, C

`f(n) = |{:(n,,n+1,,n+2),(n!,,(n+1)!,,(n+2)!),(1,,1,,1):}|=|{:(n,,1,,1),(n!,,nn!,,(n+1)(n+1)!),(1,,0,,0):}|`
[Applying `C_(3) to C_(3) -C_(2) " and " C_(2) to C_(2)-C_(1)]`
`=(n+1)(n+1)!-nn! =n![(n+1)^(2)-n]`
`=n!(n^(2) +n+1)` ltbr. Thus f(n) is divisible by n! and `n^(2) +n+1`
Promotional Banner

Similar Questions

Explore conceptually related problems

If .^(n)P_(r)=.^(n)P_(r+1) and .^(n)C_(r)=.^(n)C_(r-1) , find n and r.

Find .^(n)C_(1)-(1)/(2).^(n)C_(2)+(1)/(3).^(n)C_(3)- . . . +(-1)^(n-1)(1)/(n).^(n)C_(n)

If ^(2n+1)P_(n-1):^(2n-1)P_(n)=3:5, find n

The value of ""^(n)C_(n)+""^(n+1)C_(n)+""^(n+2)C_(n)+….+""^(n+k)C_(n) :

(.^(n)C_(1))/(2)-(2(.^(n)C_(2)))/(3)+(3(.^(n)C_(3)))/(4)-....+(-1)^(n+1)(n(.^(n)C_(n)))/(n+1)=

The greatest value of n for which the determinant Delta = |(1,1,1),(.^(n)C_(1),.^(n+3)C_(1),.^(n+6)C_(1)),(.^(n)C_(2),.^(n+3)C_(2),.^(n+6)C_(2))| is divisible by 3^(n) , is

The value of (n+2).^(n)C_(0).2^(n+1)-(n+1).^(n)C_(1).2^(n)+(n).^(n)C_(2).2^(n-1)-….." to " (n+1) terms is equal to

C_(0)^(n)C_(n)^(n+1)+C_(1)^(n)C_(n-1)^(n)+C_(2)^(n)*C_(n-2)^(n-1)+.........+C_(n)^(n)*C_(0)^(1)=2^(n-1)(n+2)