Home
Class 12
MATHS
the determinant |{:(a,,b,,aalpha+b),(b,,...

the determinant `|{:(a,,b,,aalpha+b),(b,,c,,balpha+c),(aalpha+b,,balpha+c,,0):}|=0` is equal to zero if

A

a,b,c are in A.P

B

a,b,c are in G.P.

C

`alpha` is a root of the equation `ax^(2) +bx+c=0`

D

`(x-alpha)` is a factor fo `ax^(2) +2bx+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant equation \[ \left| \begin{array}{ccc} a & b & \alpha + b \\ b & c & \beta + c \\ \alpha + b & \beta + c & 0 \end{array} \right| = 0, \] we will follow these steps: ### Step 1: Write the determinant We start with the determinant: \[ \Delta = \left| \begin{array}{ccc} a & b & \alpha + b \\ b & c & \beta + c \\ \alpha + b & \beta + c & 0 \end{array} \right|. \] ### Step 2: Apply row operations We can simplify the determinant by performing row operations. We can subtract the first column multiplied by \( \alpha \) from the third column: \[ \Delta = \left| \begin{array}{ccc} a & b & b \\ b & c & c \\ \alpha + b & \beta + c & -\alpha \end{array} \right|. \] ### Step 3: Expand the determinant Now, we will expand the determinant using the third column: \[ \Delta = a \left| \begin{array}{cc} b & c \\ \beta + c & -\alpha \end{array} \right| - b \left| \begin{array}{cc} b & c \\ \alpha + b & -\alpha \end{array} \right| + (-\alpha) \left| \begin{array}{cc} b & c \\ \alpha + b & \beta + c \end{array} \right|. \] ### Step 4: Calculate the 2x2 determinants Calculating the 2x2 determinants, we have: 1. For the first determinant: \[ \left| \begin{array}{cc} b & c \\ \beta + c & -\alpha \end{array} \right| = b(-\alpha) - c(\beta + c) = -b\alpha - c\beta - c^2. \] 2. For the second determinant: \[ \left| \begin{array}{cc} b & c \\ \alpha + b & -\alpha \end{array} \right| = b(-\alpha) - c(\alpha + b) = -b\alpha - c\alpha - bc. \] 3. For the third determinant: \[ \left| \begin{array}{cc} b & c \\ \alpha + b & \beta + c \end{array} \right| = b(\beta + c) - c(\alpha + b) = b\beta + bc - c\alpha - bc = b\beta - c\alpha. \] ### Step 5: Substitute back into the determinant Substituting these back into our determinant expression gives us: \[ \Delta = a(-b\alpha - c\beta - c^2) - b(-b\alpha - c\alpha - bc) - \alpha(b\beta - c\alpha). \] ### Step 6: Set the determinant to zero Setting \(\Delta = 0\) leads to a polynomial equation in terms of \(\alpha\): \[ -a b \alpha - a c \beta - a c^2 + b^2 \alpha + b c \alpha + b^2 c - \alpha b \beta + \alpha c \alpha = 0. \] ### Step 7: Factor the polynomial Factoring out common terms and simplifying will lead to conditions on \(a\), \(b\), and \(c\). ### Conclusion The determinant equals zero if either: 1. \( a \alpha^2 + 2b \alpha + c = 0 \) (which indicates that \(\alpha\) is a root of this polynomial). 2. \( a c = b^2 \) (which indicates that \(a\), \(b\), and \(c\) are in geometric progression).

To solve the determinant equation \[ \left| \begin{array}{ccc} a & b & \alpha + b \\ b & c & \beta + c \\ \alpha + b & \beta + c & 0 \end{array} \right| = 0, ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The determinant Delta=|{:(a,b,aalpha+c),(b,c,balpha+c),(aalpha+b,balpha+c,0):}| is equal to zero if

If |{:(a, b, aalpha+b),(b,c,balpha+c),(aalpha+b,balpha+c," "0):}|=0 then

If the determinant |[a,b,2aalpha+3b],[b,c,2balpha+3c],[2aalpha+3b,2balpha+3c,0]|=0 then (a)a , b , c are in H.P. alpha is root of 4a x^2+12 b x+9c=0 or a , b , c are in G.P. a , b , c , are in G.P. only a , b ,c are in A.P.

The determination Delta=|{:(,b,c,balpha+c),(,c,d,calpha+d),(,balpha+c,calpha+d,aalpha^(3)-calpha):}| is equal to zero if

The determinant Delta = |(b,c,b alpha +c),(c,d,c alpha + d),(b alpha + c,c alpha + d,a a^(3) - c alpha)| is equal to zero, if

The determinant |a b aalpha+bb c balpha+c aalpha+bbalpha+c0|=0, if a ,b , c are in A.P. a ,b ,c are in G.P. a ,b ,c are in H.P. alpha is a root of the equation a x^2+b c+c=0 (x-alpha) is a factor of a x^2+2b x+c

If |{:(a,b,aalpha-b),(b,c,balpha-c),(2,1," "0):}|=0andalpha!=1//2 , then a,b,c are in

The system of equations ax+by+(a alpha+ b)z=0 bx+cy+(b alpha+c)z=0 (a alpha+b)x+(balpha+c)y=0 has a non zero solutions if a,b,c are in