Home
Class 12
MATHS
" If " |{:(x^(2)+x,,x+1,,x-2),(2x^(2)+3...

`" If " |{:(x^(2)+x,,x+1,,x-2),(2x^(2)+3x-1,,3x,,3x-3),(x^(2)+2x+3,,2x-1,,2x-1):}|=xA +B` then

A

`|{:(1,,1,,1),(-1,,-3,,3),(4,,0,,0):}|`

B

`|{:(0,,1,,2),(1,,-2,,3),(-4,,0,,0):}|`

C

`|{:(1,,1,,-2),(-3,,-2,,3),(4,,0,,1):}|`

D

`|{:(0,,1,,-2),(-1,,-3,,3),(4,,0,,0):}|`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given determinant problem, we need to evaluate the determinant of the matrix and express it in the form \( xA + B \). Given the determinant: \[ \Delta = \begin{vmatrix} x^2 & x & x + 1 \\ 2x^2 + 3x - 1 & 3x & 3x - 3 \\ x^2 + 2x + 3 & 2x - 1 & 2x - 1 \end{vmatrix} \] ### Step 1: Simplify the Determinant We will perform row operations to simplify the determinant. 1. **Row Operation**: Replace \( R_2 \) with \( R_2 - 2R_1 \) and \( R_3 \) with \( R_3 - R_1 \). \[ \Delta = \begin{vmatrix} x^2 & x & x + 1 \\ (2x^2 + 3x - 1) - 2(x^2) & 3x - 2x & (3x - 3) - 2(x + 1) \\ (x^2 + 2x + 3) - (x^2) & (2x - 1) - x & (2x - 1) - (x + 1) \end{vmatrix} \] Calculating the new rows: - For \( R_2 \): - First element: \( 2x^2 + 3x - 1 - 2x^2 = x \) - Second element: \( 3x - 2x = x \) - Third element: \( 3x - 3 - 2x - 2 = x - 5 \) - For \( R_3 \): - First element: \( x^2 + 2x + 3 - x^2 = 2x + 3 \) - Second element: \( 2x - 1 - x = x - 1 \) - Third element: \( 2x - 1 - x - 1 = x - 2 \) Thus, we have: \[ \Delta = \begin{vmatrix} x^2 & x & x + 1 \\ x & x & x - 5 \\ 2x + 3 & x - 1 & x - 2 \end{vmatrix} \] ### Step 2: Further Simplification Next, we can perform more row operations. 2. **Row Operation**: Replace \( R_2 \) with \( R_2 - R_1 \). \[ \Delta = \begin{vmatrix} x^2 & x & x + 1 \\ 0 & 0 & -6 \\ 2x + 3 & x - 1 & x - 2 \end{vmatrix} \] ### Step 3: Expand the Determinant Now we can expand the determinant using the first row: \[ \Delta = x^2 \begin{vmatrix} 0 & -6 \\ x - 1 & x - 2 \end{vmatrix} - x \begin{vmatrix} 0 & -6 \\ 2x + 3 & x - 2 \end{vmatrix} + (x + 1) \begin{vmatrix} 0 & 0 \\ 2x + 3 & x - 1 \end{vmatrix} \] Calculating the determinants of the 2x2 matrices: - The first determinant is \( 0 \) because the first column is all zeros. - The second determinant is also \( 0 \) for the same reason. - The third determinant is \( 0 \). Thus, we find that: \[ \Delta = 0 \] ### Step 4: Express in the Form \( xA + B \) Since \( \Delta = 0 \), we can express it as: \[ 0 = xA + B \] This implies that \( A = 0 \) and \( B = 0 \). ### Final Answer Thus, we have: - \( A = \begin{vmatrix} 1 & 1 & 1 \\ -1 & -3 & 3 \\ 0 & 0 & 0 \end{vmatrix} \) - \( B = \begin{vmatrix} 0 & 1 & -2 \\ -1 & -3 & 3 \\ 0 & 0 & 0 \end{vmatrix} \)

To solve the given determinant problem, we need to evaluate the determinant of the matrix and express it in the form \( xA + B \). Given the determinant: \[ \Delta = \begin{vmatrix} x^2 & x & x + 1 \\ 2x^2 + 3x - 1 & 3x & 3x - 3 \\ ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Without expanding a determinant at any stage, show that |{:(x^(2)+x, x+1, x+2),(2x^(2) +3x-1, 3x, 3x-3),(x^(2) +2x+3, 2x-1, 2x-1):}|=xA+B where A and B are determinants of order 3 not involving x.

If |(x^2+x,x+1,x-2),(2x^2+3x-1,3x,3x-3),(x^2+2x+3,2x-1,2x-1)|=ax-12 then 'a' is equal to (1) 12 (2) 24 (3) -12 (4) -24

y=|(x^2+x, x+1, x-2),(2x^2+3x+1, 3x, 3x-3),(x^2+3x+2, 2x-1, 2x-1)| represents (A) a straight line (B) a circle (C) a parabola (D) none of these

x ^ (2) + 2x + 3x = 1

If |{:(x^(2) +x , 3x - 1 , -x + 3),(2x +1 , 2 + x^(2) , x^(3) - 3),(x - 3, x^(2) + 4, 3x):}| = a_(0) + a_(1) x + a_(2) x^(2) + .... + x_(7) x^(7), then the value of a_(0) is

(x^(2)-x)-(1)/(2)(x-3+3x^(2))

[[3x^(2),3x,1x^(2)+2x,2x+1,12x+1,x+2,1]]=(x-1)^(3)

im_(-)>1[(x-2)/(x^(2)-x)-(1)/(x^(3)-3x^(2)+2x)]

If f(x)=|{:(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x(x-1)):}| then

lim_(xrarr1) [(x-2)/(x^(2)-x)-(1)/(x^(3)-3x^(2)+2x)]