Home
Class 12
MATHS
" if " |{:(1,,1,,1),(a,,b,,c),(bc,,ca,,...

`" if " |{:(1,,1,,1),(a,,b,,c),(bc,,ca,,ab):}|=|{:(1,,1,,1),(a,,b,,c),(a^(3),,b^(3),,c^(3)):}|` where a,b,c are distinct positive reals then the possible values of abc is`//`are

A

`(1)/(18)`

B

`(1)/(63)`

C

`(1)/(27)`

D

`(1)/(9)`

Text Solution

Verified by Experts

The correct Answer is:
A, B

we have
`(a-b)(b-c)(c-a)=(a-b)(b-c)(c-a)(a+b+c)`
`rArr a+b+c =1`
As a , b, and c are positive
using `AM gt GM` we get
`(a+b+c)/(3) gt (abc)^(1/3)`
`:. Abc lt (1)/(27)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following : |{:(1,1,1),(a,b,c),(bc,ca,ab):}|=(a-b)(b-c)(c-a)

If a,b,c in R and a^(2)+b^(2)+c^(2)=1, then the possible values of [ab+bc+ca] are

The value of |(1,1,1),(bc,ca,ab),(b+c,c+a,a+b)| is :

If a,b, and c are distinct positive real numbers and a^(2)+b^(2)+c^(2)=1, then ab+bc+ca is

If a, b and c are distinct positive real numbers and a^2 + b^2 + c^2 = 1, then ab + bc + ca is

|[1,1,1],[a,b,c],[bc,ca,ab]|=(a-b)(b-c)(c-a)

If bc+ca+ab=18 and |(1,a^(2),a^(3)),(1,b^(2),b^(3)),(1,c^(2),c^(3))|=lamda|(1,1,1),(a,b,c),(a^(2),b^(2),c^(2))| the value of lamda is

1,1,1a,b,ca^(3),b^(3),c^(3)]|=(a-b)(b-c)(c-a)(a+b+c)