Home
Class 12
MATHS
|{:(.^(x)C(r),,.^(x)C(r+1),,.^(x)C(r+2))...

`|{:(.^(x)C_(r),,.^(x)C_(r+1),,.^(x)C_(r+2)),(.^(y)C_(r),,.^(y)C_(r+1),,.^(y)C_(r+2)),(.^(z)C_(r),,.^(z)C_(r+1),,.^(z)C_(r+2)):}|` is equal to

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D

`Delta =|{:(.^(x)C_(r),,.^(x)C_(r+1),,.^(x)C_(r+2)),(.^(y)C_(r),,.^(y)C_(r+1),,.^(y)C_(r+2)),(.^(z)C_(r),,.^(z)C_(r+1),,.^(z)C_(r+2)):}|`
Applying `C_(2) to C_(2) +C_(1)` we get
`Delta = |{:(.^(x)C_(r),,.^(x+1)C_(r+1),,.^(x)C_(r+2)),(.^(y)C_(r),,.^(y+1)C_(r+1),,.^(y)C_(r+2)),(.^(z)C_(r),,.^(z+1)C_(r+1),,.^(z)C_(r+2)):}|`
so (4) is correct option
In (1) applying `C_(3) to C_(3) +C_(2)` we get
`Delta =|{:(.^(x)C_(r),,.^(x)C_(r+1),,.^(x+1)C_(r+2)),(.^(y)C_(r),,.^(y)C_(r+1),,.^(y+1)C_(r+2)),(.^(z)C_(r),,.^(z)C_(r+1),,.^(z+1)C_(r+2)):}|`
So (3) is correct option
In above applying `C_(2) to C_(2) +C_(1)` we get
`Delta =|{:(.^(x)C_(r),,.^(x+1)C_(r+1),,.^(x+1)C_(r+2)),(.^(y)C_(r),,.^(y+1)C_(r+1),,.^(y+1)C_(r+2)),(.^(z)C_(r),,.^(z+1)C_(r+1),,.^(z+1)C_(r+2)):}|`
So (1) is correct option
In above applying `C_(3) to C_(3)+C_(2)` we get
`Delta = |{:(.^(x)C_(r),,.^(x+1)C_(r+1),,.^(x+2)C_(r+2)),(.^(y)C_(r),,.^(y+1)C_(r+1),,.^(y+2)C_(r+2)),(.^(z)C_(r),,.^(z+1)C_(r+1),,.^(z+2)C_(r+2)):}|`
so (2) is correct option
Promotional Banner

Similar Questions

Explore conceptually related problems

the roots of the equations |{:(.^(x)C_(r),,.^(n-1)C_(r),,.^(n-1)C_(r-1)),(.^(x+1)C_(r),,.^(n)C_(r),,.^(n)C_(r-1)),(.^(x+2)C_(r),,.^(n+1)C_(r),,.^(n+1)C_(r-1)):}|=0

Find the value of the determinant |(.^(n)C_(r-1),.^(n)C_(r),(r+1)^(n+2)C_(r+1)),(.^(n)C_(r),.^(n)C_(r+1),(r+2)^(n+2)C_(r+2)),(.^(n)C_(r+1),.^(n)C_(r+2),(r+3)^(n+2)C_(r+3))|

""^(n)C_(r)+2""^(n)C_(r-1)+C_(r-2) is equal to

""^(n-2)C_(r)+2""^(n-2)C_(r-1)+""^(n-2)C_(r-2) equals :

sum_(r=0)^(10) (-1)^(r) (""^(10)C_(r))/(""^(r+2)C_(r)) is equal to .

sum_(r=1)^(n) {sum_(r1=0)^(r-1) ""^(n)C_(r) ""^(r)C_(r_(1)) 2^(r_1)} is equal to