Home
Class 12
MATHS
If f(theta)=|sin^2A cot A1sin^2BcosB1sin...

If `f(theta)=|sin^2A cot A1sin^2BcosB1sin^2CcosC1|` , then `t a n A+t a n B+c` `cotAcotBcotC` `sin^2A+sin^2B+sin^2C` 0

A

` tan A + tan B+C`

B

`cot A cot B cot C`

C

`sin^(2) A + sin^(2) B+ sin^(2) C `

D

`0`

Text Solution

Verified by Experts

The correct Answer is:
D

Applying `R_(2) to R_(2)- R_(1) " and " R_(3) to R_(3) -R_(1)` we get
`Delta =|{:(sin^(2)A,,cot A,,1),(sin (B+A) sin(B-A),,(sin(A-B))/(sinA sinB),,0),(sin(C +A) sin (C-A),,(sin(A-C))/(sin A sin C),,0):}|`
`[ :' cot alpha -cot beta = (sin(Beta -alpha))/(sin alpha sin beta)]`
Expanding along `C_(3)` we get
`Delta =(sin (A-B) sin (A-C))/(sin A) [-(sin (B+A))/(sin C) +(sin (C+A))/(sinB)]`
`=(sin (A-B)sin(A-C))/(sin A) [-(sin (pi-C))/(sinC)+(sin(pi-beta))/(sin B)]`
`=(sin (A-B) sin (A -C))/(sinA) [-(sin C)/(sin C)+(sinB)/(sinB)]=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(theta)=det[[sin^(2)A,cot A,1sin^(2)B,cos B,1sin^(2)B,cos B,1sin^(2)C,cos C,1]], then (a) sin^(2)A+sin B+c(b)cot A cot B cot C(c)sin^(2)A+sin^(2)B+sin^(2)C(d)0

If 2sin^(2)A-cot^(2)B=1 then sin A sin B=

sin ^ (2) A + sin ^ (2) B-sin ^ (2) C = 2sin A sin B cos C

If A+B+C =180^(@) then prove that sin 2A + sin 2B+ sin 2C = 4 sin A sin B sin C

det [[1,1,1sin A, sin B, sin Csin ^ (2) A, sin ^ (2) B, sin ^ (2) C]] =

If A+B+C=0^(@) then prove that sin2A+sin2B+sin2C=-4sin A sin B sin C

If : A+B+C=pi, "then"" "sin ^(2) A +sin^(2)B - sin ^(2)C= A) 2 cos A * cos B * sin C B) 2 cos B * cos C * sin A C) 2 sin A * sin B * cos C D) 2 sin B * sin C * cos A

In any triangle ABC,sin^(2)A-sin^(2)B+sin^(2)C is always equal to (A) 2sin A sin B cos C(B)2sin A cos B sin C(C)2sin A cos B cos C(D)2sin A sin B sin C