Home
Class 12
MATHS
if determinant |{:( cos (theta + phi),,-...

if determinant `|{:( cos (theta + phi),,-sin (theta+phi),,cos 2phi),(sin theta,,cos theta,,sin phi),(-cos theta,,sintheta,,cos phi):}|` is

A

non-negative

B

independent of theta

C

independent of `phi`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \[ D = \begin{vmatrix} \cos(\theta + \phi) & -\sin(\theta + \phi) & \cos(2\phi) \\ \sin(\theta) & \cos(\theta) & \sin(\phi) \\ -\cos(\theta) & \sin(\theta) & \cos(\phi) \end{vmatrix} \] we will follow these steps: ### Step 1: Use Trigonometric Identities We start by applying the trigonometric identities for \(\cos(\theta + \phi)\) and \(\sin(\theta + \phi)\): \[ \cos(\theta + \phi) = \cos(\theta)\cos(\phi) - \sin(\theta)\sin(\phi) \] \[ \sin(\theta + \phi) = \sin(\theta)\cos(\phi) + \cos(\theta)\sin(\phi) \] Substituting these into the determinant gives us: \[ D = \begin{vmatrix} \cos(\theta)\cos(\phi) - \sin(\theta)\sin(\phi) & -(\sin(\theta)\cos(\phi) + \cos(\theta)\sin(\phi)) & \cos(2\phi) \\ \sin(\theta) & \cos(\theta) & \sin(\phi) \\ -\cos(\theta) & \sin(\theta) & \cos(\phi) \end{vmatrix} \] ### Step 2: Simplify the First Row Now, we simplify the first row. We can rewrite the first row as: \[ \begin{pmatrix} \cos(\theta)\cos(\phi) - \sin(\theta)\sin(\phi) & -\sin(\theta)\cos(\phi) - \cos(\theta)\sin(\phi) & \cos(2\phi) \end{pmatrix} \] ### Step 3: Row Operation Next, we perform a row operation on \(R_1\): \[ R_1 \to R_1 + \sin(\phi)R_2 + \cos(\phi)R_3 \] Calculating this, we get: \[ R_1 = \begin{pmatrix} (\cos(\theta)\cos(\phi) - \sin(\theta)\sin(\phi)) + \sin(\phi)\sin(\theta) - \cos(\phi)\cos(\theta) & -(\sin(\theta)\cos(\phi) + \cos(\theta)\sin(\phi)) + \sin(\phi)\cos(\theta) + \sin(\theta)\cos(\phi) & \cos(2\phi) + \sin(\phi)\sin(\phi) + \cos(\phi)(-\cos(\theta)) \end{pmatrix} \] ### Step 4: Simplify Further After simplification, we find that the first row becomes: \[ R_1 = \begin{pmatrix} 0 & 0 & \cos(2\phi) + 1 \end{pmatrix} \] ### Step 5: Expand the Determinant Now, we can expand the determinant: \[ D = \begin{vmatrix} 0 & 0 & \cos(2\phi) + 1 \\ \sin(\theta) & \cos(\theta) & \sin(\phi) \\ -\cos(\theta) & \sin(\theta) & \cos(\phi) \end{vmatrix} \] This determinant simplifies to: \[ D = (\cos(2\phi) + 1) \begin{vmatrix} \sin(\theta) & \sin(\phi) \\ -\cos(\theta) & \cos(\phi) \end{vmatrix} \] ### Step 6: Calculate the 2x2 Determinant Calculating the 2x2 determinant: \[ \begin{vmatrix} \sin(\theta) & \sin(\phi) \\ -\cos(\theta) & \cos(\phi) \end{vmatrix} = \sin(\theta)\cos(\phi) - (-\cos(\theta)\sin(\phi)) = \sin(\theta)\cos(\phi) + \cos(\theta)\sin(\phi) \] ### Step 7: Final Result Thus, we have: \[ D = (\cos(2\phi) + 1)(\sin(\theta)\cos(\phi) + \cos(\theta)\sin(\phi)) \] ### Conclusion The final result shows that the determinant \(D\) is dependent on \(\cos(2\phi) + 1\) and is independent of \(\theta\).

To solve the determinant \[ D = \begin{vmatrix} \cos(\theta + \phi) & -\sin(\theta + \phi) & \cos(2\phi) \\ \sin(\theta) & \cos(\theta) & \sin(\phi) \\ -\cos(\theta) & \sin(\theta) & \cos(\phi) \end{vmatrix} ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The determinant |(cos(theta+phi),-sin(theta+phi),cos2phi),(sintheta,costheta,sinphi),(-costheta,sintheta,cosphi)| is

The value of the determinant ,cos(theta+phi),-sin(theta+phi),cos2 phisin theta,cos theta,sin phi-cos theta,sin theta,cos phi]| is

" If "|{:(sin theta cos phi,,sin theta sin phi,,cos theta),(cos theta cos phi,, cos theta sin phi,,-sin theta),(-sin theta sin phi,,sin theta cos phi,,theta):}| then

If theta, phi epsilon R , then the determinant Delta=|(cos theta, - sin theta, 1),(sin theta, cos theta, 1),(cos(theta+phi),-sin(theta+phi),0)| lies in the interval

cos2 theta cos2 phi+sin^(2)(theta-phi)-sin^(2)(theta+phi)=cos(2 theta+2 phi)

(sin(theta+phi)-2sin theta+sin(theta-phi))/(cos(theta+phi)-2cos theta+cos(theta-phi))=tan theta

cos 2 (theta+ phi) +4 cos (theta + phi ) sin theta sin phi + 2 sin ^(2) phi=

Prove that: cos2 theta*cos2 phi+cos^(2)(theta+phi)-cos^(2)(theta-phi)=cos(2 theta+2 phi)