Home
Class 12
MATHS
" If " g(x) = |{:(a^(-x),,e^(x log (e)a...

`" If " g(x) = |{:(a^(-x),,e^(x log _(e)a),,x^(2)),(a^(-3x),,e^(3x log_(e)a),,x^(4)),(a^(-5x),,e^(5x log _(e)a),,1):}|` then

A

graphs of g(x) is symmetrical about the origin

B

gpaphs of g(x) is symmertical about the y-axis

C

`(d^(4) g(x))/(dx^(4)) |_(x=0) =0`

D

`f(x) =g(x) xx log .((a-x)/(a+x))` is an odd function

Text Solution

Verified by Experts

The correct Answer is:
A, C

`g(x) = |{:(a^(-x) ,,e^(log_(e)a^(x)),,x^(2)),(a^(-3x),,e^(log_(e)a^(3x)),,x^(4)),(a^(-5x),,e^(log_(e)a^(5x)),,1):}|=|{:(a^(-x),,a^(x),,x^(2)),(a^(-3x),,a^(3x),,x^(4)),(a^(-5x),,a^(5x),,1):}| (e^(loga^(x)=a^(x)))`
`rArr g(-x) = |{:(a^(x),,a^(-x),,x^(2)),(a^(3x),,a^(-3x),,x^(4)),(a^(5x),,a^(-5x),,1):}|=-|{:(a^(-x),,a^(x),,x^(2)),(a^(-3x),,a^(3x),,x^(4)),(a^(-5x),,a^(5x),,1):}|`
[interchanging 1st the 2nd columns]
`=-g(x)`
`rArr g(x) +g(-x) =0`
`rArr g(x) ` is an odd function
Hence the graph is symmetrical about origin .Also `g_(4) (x)` is an odd function [where `g_(4)`(x) is fourth derivative of g(x) ].Hence
`g_(4)(x)=-g_(4) (-x)`
`rArr g_(4) (0)= -g_(4) (0)`
`rArr g_(4) (0)=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|{:(2^(-x),e^(x log_(e)2),x^(2)),(2^(-3x),e^(3x log_(e)2),x^(4)),(2^(-5x),e^(5x log_(e)2),1):}| then show that f(x) is symmetric about origin

If g(x)=|a^(-x)e^(x log_e a)x^2a^(-3x)e^(3x log_e a)x^4a^(-5x)e^(5x log_e a)1| , then graphs of g(x) is symmetrical about the origin graph of g(x) is symmetrical about the y-axis ((d^4g(x))/(dx^4)|)_(x=0)=0 f(x)=g(x)xxlog((a-x)/(a+x)) is an odd function

int(e^(x log a)+e^(a log x)+e^(a log a))dx

int (e^(x)-e^(-x))/(e^(2x)+e^(-2x))dx=A log|(e^(x)+e^(-x)+a)/(e^(x)+e^(-x)-a)|+c then (A,a) =

If log e^(x)+log e^(1+x)=0 then x=

Evaluate: int(e^(5)(log)_(e)x-e^(4)(log)_(e)x)/(e^(3)(log)_(e)x-e^(2)(log)_(e^(x))x)dx

int(e^(6log x)-e^(5log x))/(e^(5log x)-e^(3log x))dx

int(e^(6log_(e)x)-e^(5log_(e)x))/(e^(4log_(e)xe^(3log_(e)x))) backslash dx

int((1+(log)_(e)x)^(2))/(1+(log)_(e)x^(x+1)+((log)_(e)x^(sqrt(x)))^(2))dx=

If f(x)=cos^(-1){(1-(log_(e)x)^(2))/(1+(log_(e)x)^(2))} , then f'( e )