Home
Class 12
MATHS
" if " |{:(yz-x^(2),,zx-y^(2),,xy-z^(2)...

`" if " |{:(yz-x^(2),,zx-y^(2),,xy-z^(2)),(xz-y^(2),,xy-z^(2),,yz-x^(2)),(xy-z^(2),,yz-x^(2),,zx-y^(2)):}|=|{:(r^(2),,u^(2),,u^(2)),(u^(2),,r^(2),,u^(2)),(u^(2),,u^(2),,r^(2)):}|` then

A

`r^(2)=x+y+z`

B

`r^(2) =x^(2) =y^(2) +z^(2)`

C

`u^(2) =yz+zx+xy`

D

`u^(2) =xyz`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given determinant equation, we start with the two determinants provided: 1. Left-hand side determinant: \[ D_1 = \begin{vmatrix} yz - x^2 & zx - y^2 & xy - z^2 \\ xz - y^2 & xy - z^2 & yz - x^2 \\ xy - z^2 & yz - x^2 & zx - y^2 \end{vmatrix} \] 2. Right-hand side determinant: \[ D_2 = \begin{vmatrix} r^2 & u^2 & u^2 \\ u^2 & r^2 & u^2 \\ u^2 & u^2 & r^2 \end{vmatrix} \] We need to establish a relationship between \( r, u \) and \( x, y, z \) based on the equality of these determinants. ### Step 1: Calculate the determinant \( D_2 \) The determinant \( D_2 \) can be calculated using the formula for the determinant of a \( 3 \times 3 \) matrix: \[ D = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix: \[ D_2 = r^2 \begin{vmatrix} r^2 & u^2 \\ u^2 & r^2 \end{vmatrix} - u^2 \begin{vmatrix} u^2 & u^2 \\ u^2 & r^2 \end{vmatrix} + u^2 \begin{vmatrix} u^2 & r^2 \\ u^2 & u^2 \end{vmatrix} \] Calculating these \( 2 \times 2 \) determinants: 1. \( \begin{vmatrix} r^2 & u^2 \\ u^2 & r^2 \end{vmatrix} = r^4 - u^4 \) 2. \( \begin{vmatrix} u^2 & u^2 \\ u^2 & r^2 \end{vmatrix} = u^2r^2 - u^4 = u^2(r^2 - u^2) \) 3. \( \begin{vmatrix} u^2 & r^2 \\ u^2 & u^2 \end{vmatrix} = u^4 - u^2r^2 = u^2(u^2 - r^2) \) Substituting these back into \( D_2 \): \[ D_2 = r^2(r^4 - u^4) - u^2[u^2(r^2 - u^2)] + u^2[u^2(u^2 - r^2)] \] This simplifies to: \[ D_2 = r^6 - r^2u^4 - u^4 + u^4 = r^6 - r^2u^4 \] ### Step 2: Analyze the left-hand side determinant \( D_1 \) The left-hand side determinant \( D_1 \) is more complex. However, we can observe that it is structured similarly to the cofactor matrix of \( x, y, z \). ### Step 3: Establish the relationship From the video transcript, we find that: \[ D_1 = (x^2 + y^2 + z^2)^2 - (xy + yz + zx)^2 \] This can be expressed as: \[ D_1 = (x^2 + y^2 + z^2 - (xy + yz + zx))(x^2 + y^2 + z^2 + (xy + yz + zx)) \] ### Step 4: Set the determinants equal Since \( D_1 = D_2 \), we have: \[ (x^2 + y^2 + z^2 - (xy + yz + zx))(x^2 + y^2 + z^2 + (xy + yz + zx)) = r^6 - r^2u^4 \] ### Step 5: Compare coefficients By comparing coefficients from both sides, we can derive relationships: - \( x^2 + y^2 + z^2 = r^2 \) - \( xy + yz + zx = u^2 \) ### Conclusion Thus, the relationships derived are: \[ x^2 + y^2 + z^2 = r^2 \quad \text{and} \quad xy + yz + zx = u^2 \]

To solve the given determinant equation, we start with the two determinants provided: 1. Left-hand side determinant: \[ D_1 = \begin{vmatrix} yz - x^2 & zx - y^2 & xy - z^2 \\ xz - y^2 & xy - z^2 & yz - x^2 \\ xy - z^2 & yz - x^2 & zx - y^2 ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that |{:(x^(2),,x^(2)-(y-z)^(2),,yz),(y^(2),,y^(2)-(z-x)^(2),,zx),(z^(2),,z^(2)-(x-y)^(2),,xy):}| =(x-y) (y-z) (z-x)(x+y+z) (x^(2)+y^(2)+z^(2))

(x-y-z)^(2)-(x^(2)+y^(2)+z^(2))=2(yz-zx-xy)

|[yz,x,x^(2)],[zx,y,y^(2)],[xy,z,z^(2)]|=|[1,x^(2),x^(3)],[1,y^(2),y^(3)],[1,z^(2),z^(3)]|

|(x^(2),y^(2)+z^(2),yz),(y^(2),z^(2)+x^(2),zx),(z^(2),x^(2)+y^(2),xy)| is divisible by

xy,xz,x^(2)+1y^(2)+!,yz,xyyz,z^(2)+1,xz]|=1+x^(2)+y^(2)+z^(2)

prove that: |(y^(2)z^(2),yz,y+z),(z^(2)x^(2),zx,z+x),(x^(2)y^(2),xy,x+y)|=0

Show that |[yz-x^2, zx-y^2, xy-y^2] , [zx-y^2, xy-z^2, yz-x^2] , [xy-z^2, yz-x^2, zx-y^2]|= |[r^2, u^2, u^2] , [u^2, r^2, u^2] , [u^2, u^2, r^2]| where r^2 = x^2+y^2+z^2 and u^2= xy+yz+zx

(y^(2)+yz+z^(2))/((x-y)(x-z))+(z^(2)+zx+x^(2))/((y-z)(y-x))+(x^(2)+xy+y^(2))/((z-x)(z-y))

[[x,x^(2),yzy,y^(2),zxz,z^(2),xy]]=(x-y)(y-z)(z-x)(xy+yz+zx)