Home
Class 12
MATHS
Let alpha ,beta and gamma be the roots ...

Let `alpha ,beta` and `gamma` be the roots of the equations `x^(3) +ax^(2)+bx+ c=0,(a ne 0)`. If the system of equations `alphax + betay+gammaz=0`
`beta x +gamma y+ alphaz =0` and `gamma x =alpha y + betaz =0` has non-trivial solution then

A

`a^(2)=3b`

B

`a^(3) =27c`

C

`b^(3) =27c^(2)`

D

`alpha+beta+gamma=0`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C

Given system of equation has non-trivial solutions
`:. |{:(alpha,,beta,,gamma),(beta,,gamma,,alpha),(gamma,,alpha,,beta):}|=0`
`rArr alpha^(3) +beta^(3)+gamma^(3)=3alphabetagamma`
`rArr alpha=beta=gamma`
Now `alpha+beta +gamma=-a,alpha beta+ beta gamma +alpha gamma =b, alpha beta gamma =-c`
`rArr 3alpha =-a, 3alpha^(2) =b,alpha^(3)=-c`
`rArr alpha=-(a)/(3),alpha^(2)=(b)/(3),alpha^(3)=-c`
`rArr a^(2) =3b,a^(3) =27 c, b^(3) =27 c^(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let alpha, beta and gamma are the roots of equation x^(3) + ax^(2) + bx + c = 0 (a, b, c in R, a != 0) . If system of equations alphax + betay + gammaz = 0 betax + gammay + alphaz = 0 gammax + alphay + betaz = 0 has non trivial solution then the value of ((a^2)/(b)) is :

Let alpha,beta,gamma are the real roots of the equation x^(3)+ax^(2)+bx+c=0(a,b,c in R and a!=0) If the system of equations (inu,v,andw) given by alpha u+beta v+gamma w=0 beta u+gamma v+alpha w=0gamma u+alpha v+beta w=0 has non-trivial solutions then the value of a^(2)/b is

The roots alpha, beta and gamma of an equation x^(3) - 3 a x^(2) + 3 bx - c = 0 are in H.P. Then,

If alpha,beta,gamma are the roots of the equation x^(3)+px^(2)+qx+r=0 such that alpha+beta=0 then

If alpha, beta and gamma are the roots of the cubic equation (x-1)(x^(2) + x + 3)=0 , then the value of alpha^(3) + beta^(3) + gamma^(3) is:

If alpha, beta, gamma are the roots of the equation x^(3) + ax^(2) + bx + c = 0, "then" alpha^(-1) + beta^(-1) + gamma^(-1)=

If alpha, beta ,gamma are the roots of the equation x ^(3) + 2x ^(2) - x+1 =0, then vlaue of ((2- alpha )(2-beta) (2-gamma))/((2+ alpha ) (2+ beta ) (2 + gamma)) is :

Let alpha,beta and gamma be the roots of the equation x^(3)+6x^(2)-px-42=0 . If alpha, beta and gamma are in arithmetic progression then |alpha|+|beta|+|gamma|=

If alpha,beta,gamma are the roots of the equation ax^(3)+bx^(2)+cx+d=0 then find the value of sum(alpha^(2)(beta+gamma))