Home
Class 12
MATHS
Consider the function f(x) = |{:(a^(2)+x...

Consider the function f(x) = `|{:(a^(2)+x,,ab,,ac),(ab,,b^(2)+x,,bc),(ac,,bc,,c^(2)+x):}|`
In which of the following interval f(x) is strictly increasing

A

`(-oo ,oo)`

B

`(-oo ,0)`

C

`(0,oo)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C

`Delta =(1)/(a) |{:(a^(3)+ax,,ab,,ac),(a^(2)b,,b^(2)+x,,bc),(a^(2)c,,bc,,c^(2)+x):}|`
Applying `C_(1) to C_(1)+bC_(2) +cC_(2)` and taking `a^(2) +b^(2)+c^(2)+x` common we get
`Delta =(1)/(a)(a^(2)+b^(2)+c^(2)+x) |{:(a,,ab,,ac),(b,,b^(2)+x,,bc),(c,,bc,,c^(2)+x):}|`
Applying `C_(2) to C_(2)-bC_(1) " and " C_(3) to C_(3)-cC_(1)` we get
`Delta =(1)/(a)(a^(2)+b^(2)+c^(2)+x) |{:(a,,0,,0),(b,,x,,0),(c,,0,,x):}|`
`=(1)/(a) (a^(2) +b^(2)+c^(2)+x) (ax^(2))`
`=x^(2) (a^(2)+b^(2)+c^(2)+x)`
Thus `Delta ` is divisib le by x and `x^(2)`. also graph of f(x) is
Promotional Banner

Similar Questions

Explore conceptually related problems

What is |{:(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2)):}| equal to ?

One factor of |(a^(2) + x,ab,ac),(ab,b^(2) + x,cb),(ca,cb,c^(2) + x)| , is

What is the value of |(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))| ?

f(x)=det[[x+a^(2),ab,acab,x+b^(2),bcab,bc,x+c^(2)]], find f'(x)

The determinant Delta=|{:(a^(2)+x^(2),ab,ac),(ab,b^(2)+x^(2),bc),(ac,bc,c^(2)+x^(2)):}| is divisible by

The determinant Delta = |(a^(2) + x^(2),ab,ac),(ab,b^(2) + x^(2),bc),(ac,bc,c^(2) + x^(2))| is divisible

The interval in which the function f(x)=x^(2)-3x+36 is strictly increasing, is :

The determinant Delta=|{:(,a^(2)(1+x),ab,ac),(,ab,b^(2)(1+x),(bc)),(,ac,bc,c^(2)(1+x)):}| is divisible by