Home
Class 12
MATHS
Suppose f(x) is a function satisfying...

Suppose f(x) is a function satisfying the following conditions :
(i) f(0)=2,f(1)=1
(ii) f has a minimum value at `x=5//2`
(iii) for all `x,f (x) = |{:(2ax,,2ax-1,,2ax+b+1),(b,,b+1,,-1),(2(ax+b),,2ax+2b+1,,2ax+b):}|`
The value of f(2) is

A

`1//4`

B

`1//2`

C

`-1`

D

`3`

Text Solution

Verified by Experts

The correct Answer is:
B

`f(x) = |{:(2ax,,2ax-1,,2ax+b+1),(b,,b+1,,-1),(2(ax+b),,2ax+2b+1,,2ax+b):}|`
Applying `(C_(1) to C_(1)-C_(3) ,C_(2) to C_(2) -C_(3)`
`f(x) =|{:(-(b+1),,-(b+2),,2ax+b+1),((b+1),,(b+2),,-1),(b,,b+1,,2ax+b):}|`
Applying `R_(1) to R_(1)+R_(2)" and " R_(3) to R_(3)-R_(2)` we get
`f(x) = |{:(0,,0,,2ax+b),(b+1,,b+2,,-1),(-1,,-1,,2ax+b+1):}|`
`=(2ax +b) [-b-1+b+2]`
`:. f(x) =2ax+b`
`:. f(x) = ax^(2) +bx +c`
`f(0) =2 rArr c=2`
`f(1) =1rArr a+b+2=1rArr a+b =1`
`f(5//2) =0 rArr 5a+ b=0`
`rArr a=1//4 ,b=-5//4`
hence `f(x) =(1)/(4) x^(2) -(5)/(4)x+2`
Clearly . discriminant (D) of the equation f(x) =0 is less than 0.
hence f(x)=0 has imaginary roots .Also f(2) `=1//2` .and minimum value of f(x) is
`-((25)/(16)-4.(1)/(4) (2))/(4.(1)/(4)) =(7)/(16)`
Hence range of the f(x) is `[(7)/(16),oo)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose f(x) is a function satisfying the folowing conditions: (i)f(0)=2,f(1)=1 (ii) f(x) has a minimum value at x=(5)/(2) (iii) for all xf'(x)= |{:(2ax,2ax-1,2ax+b+1),(b,b+1,-1),(2(ax+b),2ax+2b+1,2ax+b):}| The value of f(2)+f(3) is

If f(x)=bx^(2) + ax has minimum at (2, -12) then (a , b)-=..

If f(x)=(ax^(2)+b)^(3) , then the function g satisfying f(g(x))=g(f(x)) is given by

If f(x)=|(a,-1,0),(ax,a,-1),(ax^2,ax,a)|, then f(2x)-f(x) equals

If f(x)=|(a,-1,0), (ax,1,-1), (ax^2,ax,9)|, then f(2x)-f(x) equals